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• You need to hire a new employee.

• The headhunter sends you a different 
applicant every day for n days.

• If the applicant is better than the current 
employee then fire the current employee and 
hire the applicant.

• Firing and hiring is expensive.

• How expensive is the whole process?

Tuesday, October 30, 2012



3

• Worst case is when the headhunter sends 
you the n applicants in increasing order of 
goodness.

• Then you hire (and fire) each one in turn:  n 
hires.
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• Best case is when the headhunter sends you 
the best applicant on the first day.

• Total cost is just 1 (fire and hire once).
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• What about the average cost?

• An input to the hiring problem is an ordering of the 
n applicants.

• There are n! different inputs.

• Assume there is some distribution on the inputs

• for instance, each ordering is equally likely

• but other distributions are also possible

• Average cost is expected value…
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• We want to know the expected cost of our hiring 
algorithm, in terms of how many times we hire an 
applicant

• Elementary event s is a sequence of the n applicants

• Sample space is all n! sequences of applicants

• Assume uniform distribution, so each sequence is 
equally likely, i.e., has probability 1/n!

• Random variable X(s) is the number of applicants that 
are hired, given the input sequence s

• What is E[X]?
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• Break the problem down using indicator 
random variables and properties of 
expectation

• Change viewpoint:  instead of one random 
variable that counts how many applicants are 
hired, consider n random variables, each one 
keeping track of whether or not a particular 
applicant is hired.

• Indicator random variable Xi for applicant i:     
1 if applicant i is hired, 0 otherwise
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• Important fact:  X = X1 + X2 + … + Xn

• number hired is sum of all the indicator 
r.v.'s

• Important fact: 

• E[Xi] = Pr["applicant i is hired"]

• Why?  Plug in definition of expected value.

• Probability of hiring i is probability that i is 
better than the previous i-1 applicants…
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• Suppose n = 4 and i = 3.

• In what fraction of all the inputs is the 3rd 
applicant better than the 2 previous ones?  

1234
1243
1324
1342
1423
1432

2134
2143
2314
2341
2413
2431

3124
3142
3214
3241
3412
3421

4123
4132
4213
4231
4312
4321
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• Suppose n = 4 and i = 3.

• In what fraction of all the inputs is the 3rd 
applicant better than the 2 previous ones?  

1234
1243
1324
1342
1423
1432

2134
2143
2314
2341
2413
2431

3124
3142
3214
3241
3412
3421

4123
4132
4213
4231
4312
4321

8/24 = 1/3
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• In general, since all permutations are equally 
likely, if we only consider the first i 
applicants, the largest of them is equally likely 
to occur in each of the i positions.

• Thus Pr[Xi = 1] = 1/i.
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• Recall that X is random variable equal to the 
number of hires
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• Recall that X is random variable equal to the 
number of hires

• Recall that X = the sum of the Xi's (each Xi is 
the random variable that tells whether or not 
the i-th applicant is hired)
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• Recall that X is random variable equal to the 
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• Recall that X is random variable equal to the 
number of hires

• Recall that X = the sum of the Xi's (each Xi is 
the random variable that tells whether or not 
the i-th applicant is hired)

• E[X] = E[∑ Xi]

          = ∑ E[Xi], by property of E

          = ∑ Pr[Xi = 1], by property of Xi

          = ∑ 1/i, by argument on previous slide

          ≤ ln n + 1, by formula for harmonic number
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• So average number of hires is ln n, which is much better than 
worst case number (n).

• But this relies on the headhunter sending you the applicants 
in random order.

• What if you cannot rely on that? 

• maybe headhunter always likes to impress you, by sending you 
better and better applicants

• If you can get access to the list of applicants in advance, you 
can create your own randomization, by randomly permuting 
the list and then interviewing the applicants.

• Move from (passive) probabilistic analysis to (active) 
randomized algorithm by putting the randomization under 
your control!
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• Instead of relying on a (perhaps incorrect) 
assumption that inputs exhibit some 
distribution, make your own input distribution 
by, say, permuting the input randomly or taking 
some other random action

• On the same input, a randomized algorithm has 
multiple possible executions

• No one input elicits worst-case behavior

• Typically we analyze the average case behavior 
for the worst possible input

Tuesday, October 30, 2012



14

• Suppose we have access to the entire list of 
candidates in advance

• Randomly permute the candidate list

• Then interview the candidates in this random 
sequence

• Expected number of hirings/firings is O(log n) 
no matter what the original input is

Tuesday, October 30, 2012



15

• Probabilistic analysis of a deterministic 
algorithm:

• assume some probability distribution on 
the inputs

• Randomized algorithm:

• use random choices in the algorithm

Probabilistic Analysis versus 
Randomized Algorithm
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• input:  array A[1..n]

• for i := 1 to n do

• j := value in [i..n] chosen uniformly at random 

• swap A[i] with A[j] 

How to Randomly 
Permute an Array
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• Show that after i-th iteration of the for loop:

	
 A[1..i] equals each permutation of i elements 
from {1,…,n} with probability (n–i)!/n!

• Basis:  After first iteration, A[1] contains each 
permutation of 1 element from {1,…,n} with 
probability (n–1)!/n! = 1/n

• true since A[1] is swapped with an element drawn 
from the entire array uniformly at random
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• Induction:  Assume that after (i–1)-st iteration 
of the for loop

	
 A[1..i–1] equals each permutation of i–1 
elements from {1,…,n} with probability (n–(i–
1))!/n!

• The probability that A[1..i] contains 
permutation x1, x2, …, xi is the probability that 
A[1..i–1] contains x1, x2, …, xi–1 after the (i–1)-
st iteration AND that the i-th iteration puts xi 
in A[i].
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• Let e1 be the event that A[1..i–1] contains x1, 
x2, …, xi–1 after the (i–1)-st iteration.

• Let e2 be the event that the i-th iteration 
puts xi in A[i].

• We need to show that Pr[e1∩e2] = (n–i)!/n!.

• Unfortunately, e1 and e2 are not independent:  
if some element appears in A[1..i –1], then it 
is not available to appear in A[i].
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• Recall:  e1 is event that A[1..i–1] = x1,…,xi–1

• Recall:  e2 is event that A[i] = xi

• Pr[e1∩e2] = Pr[e2|e1]·Pr[e1]

• Pr[e2|e1] = 1/(n–i+1) because 

• xi is available in A[i..n] to be chosen since e1 already 
occurred and did not include xi

• every element in A[i..n] is equally likely to be chosen

• Pr[e1] = (n–(i–1))!/n! by inductive hypothesis

• So Pr[e1∩e2] = [1/(n–i+1)]·[(n–(i–1))!/n!]
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• After the last iteration (the n-th), the 
inductive hypothesis tells us that

	
 A[1..n] equals each permutation of n 
elements from {1,…,n} with probability 
(n–n)!/n! = 1/n!

• Thus the algorithm gives us a uniform 
random permutation.
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