
1

Hiring Problem
and

Generating Random Permutations
Andreas Klappenecker

Partially based on slides by Prof. Welch

Tuesday, October 30, 2012

2

• You need to hire a new employee.

• The headhunter sends you a different
applicant every day for n days.

• If the applicant is better than the current
employee then fire the current employee and
hire the applicant.

• Firing and hiring is expensive.

• How expensive is the whole process?

Tuesday, October 30, 2012

3

• Worst case is when the headhunter sends
you the n applicants in increasing order of
goodness.

• Then you hire (and fire) each one in turn: n
hires.

Tuesday, October 30, 2012

4

• Best case is when the headhunter sends you
the best applicant on the first day.

• Total cost is just 1 (fire and hire once).

Tuesday, October 30, 2012

5

• What about the average cost?

• An input to the hiring problem is an ordering of the
n applicants.

• There are n! different inputs.

• Assume there is some distribution on the inputs

• for instance, each ordering is equally likely

• but other distributions are also possible

• Average cost is expected value…

Tuesday, October 30, 2012

6

• We want to know the expected cost of our hiring
algorithm, in terms of how many times we hire an
applicant

• Elementary event s is a sequence of the n applicants

• Sample space is all n! sequences of applicants

• Assume uniform distribution, so each sequence is
equally likely, i.e., has probability 1/n!

• Random variable X(s) is the number of applicants that
are hired, given the input sequence s

• What is E[X]?

Tuesday, October 30, 2012

7

• Break the problem down using indicator
random variables and properties of
expectation

• Change viewpoint: instead of one random
variable that counts how many applicants are
hired, consider n random variables, each one
keeping track of whether or not a particular
applicant is hired.

• Indicator random variable Xi for applicant i:
1 if applicant i is hired, 0 otherwise

Tuesday, October 30, 2012

8

• Important fact: X = X1 + X2 + … + Xn

• number hired is sum of all the indicator
r.v.'s

• Important fact:

• E[Xi] = Pr["applicant i is hired"]

• Why? Plug in definition of expected value.

• Probability of hiring i is probability that i is
better than the previous i-1 applicants…

Tuesday, October 30, 2012

9

• Suppose n = 4 and i = 3.

• In what fraction of all the inputs is the 3rd
applicant better than the 2 previous ones?

1234
1243
1324
1342
1423
1432

2134
2143
2314
2341
2413
2431

3124
3142
3214
3241
3412
3421

4123
4132
4213
4231
4312
4321

Tuesday, October 30, 2012

9

• Suppose n = 4 and i = 3.

• In what fraction of all the inputs is the 3rd
applicant better than the 2 previous ones?

1234
1243
1324
1342
1423
1432

2134
2143
2314
2341
2413
2431

3124
3142
3214
3241
3412
3421

4123
4132
4213
4231
4312
4321

8/24 = 1/3

Tuesday, October 30, 2012

10

• In general, since all permutations are equally
likely, if we only consider the first i
applicants, the largest of them is equally likely
to occur in each of the i positions.

• Thus Pr[Xi = 1] = 1/i.

Tuesday, October 30, 2012

11

Tuesday, October 30, 2012

11

• Recall that X is random variable equal to the
number of hires

Tuesday, October 30, 2012

11

• Recall that X is random variable equal to the
number of hires

• Recall that X = the sum of the Xi's (each Xi is
the random variable that tells whether or not
the i-th applicant is hired)

Tuesday, October 30, 2012

11

• Recall that X is random variable equal to the
number of hires

• Recall that X = the sum of the Xi's (each Xi is
the random variable that tells whether or not
the i-th applicant is hired)

• E[X] = E[∑ Xi]

Tuesday, October 30, 2012

11

• Recall that X is random variable equal to the
number of hires

• Recall that X = the sum of the Xi's (each Xi is
the random variable that tells whether or not
the i-th applicant is hired)

• E[X] = E[∑ Xi]

 = ∑ E[Xi], by property of E

Tuesday, October 30, 2012

11

• Recall that X is random variable equal to the
number of hires

• Recall that X = the sum of the Xi's (each Xi is
the random variable that tells whether or not
the i-th applicant is hired)

• E[X] = E[∑ Xi]

 = ∑ E[Xi], by property of E

 = ∑ Pr[Xi = 1], by property of Xi

Tuesday, October 30, 2012

11

• Recall that X is random variable equal to the
number of hires

• Recall that X = the sum of the Xi's (each Xi is
the random variable that tells whether or not
the i-th applicant is hired)

• E[X] = E[∑ Xi]

 = ∑ E[Xi], by property of E

 = ∑ Pr[Xi = 1], by property of Xi

 = ∑ 1/i, by argument on previous slide

Tuesday, October 30, 2012

11

• Recall that X is random variable equal to the
number of hires

• Recall that X = the sum of the Xi's (each Xi is
the random variable that tells whether or not
the i-th applicant is hired)

• E[X] = E[∑ Xi]

 = ∑ E[Xi], by property of E

 = ∑ Pr[Xi = 1], by property of Xi

 = ∑ 1/i, by argument on previous slide

 ≤ ln n + 1, by formula for harmonic number
Tuesday, October 30, 2012

12

• So average number of hires is ln n, which is much better than
worst case number (n).

• But this relies on the headhunter sending you the applicants
in random order.

• What if you cannot rely on that?

• maybe headhunter always likes to impress you, by sending you
better and better applicants

• If you can get access to the list of applicants in advance, you
can create your own randomization, by randomly permuting
the list and then interviewing the applicants.

• Move from (passive) probabilistic analysis to (active)
randomized algorithm by putting the randomization under
your control!

Tuesday, October 30, 2012

13

• Instead of relying on a (perhaps incorrect)
assumption that inputs exhibit some
distribution, make your own input distribution
by, say, permuting the input randomly or taking
some other random action

• On the same input, a randomized algorithm has
multiple possible executions

• No one input elicits worst-case behavior

• Typically we analyze the average case behavior
for the worst possible input

Tuesday, October 30, 2012

14

• Suppose we have access to the entire list of
candidates in advance

• Randomly permute the candidate list

• Then interview the candidates in this random
sequence

• Expected number of hirings/firings is O(log n)
no matter what the original input is

Tuesday, October 30, 2012

15

• Probabilistic analysis of a deterministic
algorithm:

• assume some probability distribution on
the inputs

• Randomized algorithm:

• use random choices in the algorithm

Probabilistic Analysis versus
Randomized Algorithm

Tuesday, October 30, 2012

Generating
Random Permutations

Tuesday, October 30, 2012

17

• input: array A[1..n]

• for i := 1 to n do

• j := value in [i..n] chosen uniformly at random

• swap A[i] with A[j]

How to Randomly
Permute an Array

Tuesday, October 30, 2012

18

• Show that after i-th iteration of the for loop:

	
 A[1..i] equals each permutation of i elements
from {1,…,n} with probability (n–i)!/n!

• Basis: After first iteration, A[1] contains each
permutation of 1 element from {1,…,n} with
probability (n–1)!/n! = 1/n

• true since A[1] is swapped with an element drawn
from the entire array uniformly at random

Tuesday, October 30, 2012

19

• Induction: Assume that after (i–1)-st iteration
of the for loop

	
 A[1..i–1] equals each permutation of i–1
elements from {1,…,n} with probability (n–(i–
1))!/n!

• The probability that A[1..i] contains
permutation x1, x2, …, xi is the probability that
A[1..i–1] contains x1, x2, …, xi–1 after the (i–1)-
st iteration AND that the i-th iteration puts xi
in A[i].

Tuesday, October 30, 2012

20

• Let e1 be the event that A[1..i–1] contains x1,
x2, …, xi–1 after the (i–1)-st iteration.

• Let e2 be the event that the i-th iteration
puts xi in A[i].

• We need to show that Pr[e1∩e2] = (n–i)!/n!.

• Unfortunately, e1 and e2 are not independent:
if some element appears in A[1..i –1], then it
is not available to appear in A[i].

Tuesday, October 30, 2012

21

• Recall: e1 is event that A[1..i–1] = x1,…,xi–1

• Recall: e2 is event that A[i] = xi

• Pr[e1∩e2] = Pr[e2|e1]·Pr[e1]

• Pr[e2|e1] = 1/(n–i+1) because

• xi is available in A[i..n] to be chosen since e1 already
occurred and did not include xi

• every element in A[i..n] is equally likely to be chosen

• Pr[e1] = (n–(i–1))!/n! by inductive hypothesis

• So Pr[e1∩e2] = [1/(n–i+1)]·[(n–(i–1))!/n!]

Tuesday, October 30, 2012

22

• After the last iteration (the n-th), the
inductive hypothesis tells us that

	
 A[1..n] equals each permutation of n
elements from {1,…,n} with probability
(n–n)!/n! = 1/n!

• Thus the algorithm gives us a uniform
random permutation.

Tuesday, October 30, 2012

