Hiring Problem and

Generating Random Permutations

Andreas Klappenecker

Partially based on slides by Prof. Welch

- You need to hire a new employee.
- The headhunter sends you a different applicant every day for n days.
- If the applicant is better than the current employee then fire the current employee and hire the applicant.
- Firing and hiring is expensive.
- How expensive is the whole process?
- Worst case is when the headhunter sends you the n applicants in increasing order of goodness.
- Then you hire (and fire) each one in turn: n hires.
- Best case is when the headhunter sends you the best applicant on the first day.
- Total cost is just I (fire and hire once).
- What about the average cost?
- An input to the hiring problem is an ordering of the n applicants.
- There are n ! different inputs.
- Assume there is some distribution on the inputs
- for instance, each ordering is equally likely
- but other distributions are also possible
- Average cost is
- We want to know the expected cost of our hiring algorithm, in terms of how many times we hire an applicant
- Elementary event s is a sequence of the n applicants
- Sample space is all n ! sequences of applicants
- Assume uniform distribution, so each sequence is equally likely, i.e., has probability I/n!
- Random variable $X(s)$ is the number of applicants that are hired, given the input sequence s
- What is $\mathrm{E}[\mathrm{X}]$?
- Break the problem down using indicator random variables and properties of expectation
- Change viewpoint: instead of one random variable that counts how many applicants are hired, consider n random variables, each one keeping track of whether or not a particular applicant is hired.
- Indicator random variable X_{i} for applicant i: I if applicant i is hired, 0 otherwise
- Important fact: $X=X_{1}+X_{2}+\ldots+X_{n}$
- number hired is sum of all the indicator r.v.'s
- Important fact:
- $\mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]=\operatorname{Pr}[$ "applicant i is hired"]
- Why? Plug in definition of expected value.
- Probability of hiring i is probability that i is better than the previous i-I applicants...
- Suppose $\mathrm{n}=4$ and $\mathrm{i}=3$.
- In what fraction of all the inputs is the 3rd applicant better than the 2 previous ones?

1234213431244123
1243214331424132
1324
1342234132414231
1423
14322431

- Suppose $\mathrm{n}=4$ and $\mathrm{i}=3$.
- In what fraction of all the inputs is the 3rd applicant better than the 2 previous ones?

```
12342134 31244123
12432143 31424132
1324
                                8/24=1/3
1 3 4 2 2 3 4 1 3 2 4 1 4 2 3 1
1423
14322431
```

- In general, since all permutations are equally likely, if we only consider the first i applicants, the largest of them is equally likely to occur in each of the i positions.
- Thus $\operatorname{Pr}\left[\mathrm{X}_{\mathrm{i}}=\mathrm{I}\right]=\mathrm{I} / \mathrm{i}$.
- Recall that X is random variable equal to the number of hires
- Recall that X is random variable equal to the number of hires
- Recall that $X=$ the sum of the X_{i} 's (each X_{i} is the random variable that tells whether or not the i-th applicant is hired)
- Recall that X is random variable equal to the number of hires
- Recall that $X=$ the sum of the X_{i} 's (each X_{i} is the random variable that tells whether or not the i-th applicant is hired)
- $E[X]=E\left[\Sigma X_{i}\right]$
- Recall that X is random variable equal to the number of hires
- Recall that $X=$ the sum of the X_{i}^{\prime} 's (each X_{i} is the random variable that tells whether or not the i-th applicant is hired)
- $E[X]=E\left[\Sigma X_{i}\right]$
$=\Sigma \mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]$, by property of E
- Recall that X is random variable equal to the number of hires
- Recall that $X=$ the sum of the X_{i}^{\prime} 's (each X_{i} is the random variable that tells whether or not the i-th applicant is hired)
- $\mathrm{E}[\mathrm{X}]=\mathrm{E}\left[\Sigma \mathrm{X}_{\mathrm{i}}\right]$
$=\Sigma E\left[X_{i}\right]$, by property of E

$$
=\sum \operatorname{Pr}\left[X_{i}=1\right] \text {, by property of } X_{i}
$$

- Recall that X is random variable equal to the number of hires
- Recall that $X=$ the sum of the X_{i}^{\prime} 's (each X_{i} is the random variable that tells whether or not the i-th applicant is hired)
- $\mathrm{E}[\mathrm{X}]=\mathrm{E}\left[\Sigma \mathrm{X}_{\mathrm{i}}\right]$
$=\Sigma \mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]$, by property of E
$=\sum \operatorname{Pr}\left[X_{i}=1\right]$, by property of X_{i}
$=\Sigma \mathrm{I} / \mathrm{i}$, by argument on previous slide
- Recall that X is random variable equal to the number of hires
- Recall that $X=$ the sum of the X_{i}^{\prime} 's (each X_{i} is the random variable that tells whether or not the i-th applicant is hired)
- $E[X]=E\left[\Sigma X_{i}\right]$
$=\Sigma \mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]$, by property of E
$=\sum \operatorname{Pr}\left[X_{i}=1\right]$, by property of X_{i}
$=\Sigma \mathrm{I} / \mathrm{i}$, by argument on previous slide
$\leq \ln \mathrm{n}+\mathrm{I}$, by formula for harmonic number
- So average number of hires is $\ln \mathrm{n}$, which is much better than worst case number (n).
- But this relies on the headhunter sending you the applicants in random order.
- What if you cannot rely on that?
- maybe headhunter always likes to impress you, by sending you better and better applicants
- If you can get access to the list of applicants in advance, you can create your own randomization, by randomly permuting the list and then interviewing the applicants.
- Move from (passive) probabilistic analysis to (active) randomized algorithm by putting the randomization under your contro!!
- Instead of relying on a (perhaps incorrect) assumption that inputs exhibit some distribution, make your own input distribution by, say, permuting the input randomly or taking some other random action
- On the same input, a randomized algorithm has multiple possible executions
- No one input elicits worst-case behavior
- Typically we analyze the average case behavior for the worst possible input
- Suppose we have access to the entire list of candidates in advance
- Randomly permute the candidate list
- Then interview the candidates in this random sequence
- Expected number of hirings/firings is $\mathrm{O}(\log \mathrm{n})$ no matter what the original input is

Probabilistic Analysis versus Randomized Algorithm

- Probabilistic analysis of a deterministic algorithm:
- assume some probability distribution on the inputs
- Randomized algorithm:
- use random choices in the algorithm

Generating Random Permutations

How to Randomly Permute an Array

- input: array A[I..n]
- for $\mathrm{i}:=\mathrm{I}$ to n do
- $\mathrm{j}:=$ value in [i..n] chosen uniformly at random
- swap A[i] with A[j]
- Show that after i-th iteration of the for loop:

A[I..i] equals each permutation of i elements from $\{1, \ldots, n\}$ with probability (n-i)!/n!

- Basis: After first iteration, $\mathrm{A}[\mathrm{I}]$ contains each permutation of I element from $\{1, \ldots, n\}$ with probability ($\mathrm{n}-\mathrm{I}$)!/n! = I/n
- true since $\mathrm{A}[\mathrm{I}]$ is swapped with an element drawn from the entire array uniformly at random
- Induction: Assume that after ($\mathrm{i}-\mathrm{I}$)-st iteration of the for loop

A[I..i-I] equals each permutation of $\mathrm{i}-\mathrm{I}$ elements from $\{1, \ldots, n\}$ with probability ($\mathrm{n}-(\mathrm{i}-$ I))!/n!

- The probability that $\mathrm{A}[\mathrm{I} . . \mathrm{i}]$ contains permutation $x_{1}, x_{2}, \ldots, x_{i}$ is the probability that A[I..i-I] contains $x_{1}, x_{2}, \ldots, x_{i-1}$ after the ($i-1$)st iteration AND that the i-th iteration puts X_{i} in $A[i]$.
- Let e_{1} be the event that $A[1 . . i-1]$ contains X_{1}, $\mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{i}-1}$ after the ($\mathrm{i}-\mathrm{I}$)-st iteration.
- Let e_{2} be the event that the i-th iteration puts X_{i} in $\mathrm{A}[\mathrm{i}]$.
- We need to show that $\operatorname{Pr}\left[e_{1} \cap e_{2}\right]=(n-i)!/ n!$.
- Unfortunately, e_{1} and e_{2} are not independent: if some element appears in $A[I . . i-I]$, then it is not available to appear in $\mathrm{A}[\mathrm{i}]$.
- Recall: e_{1} is event that $\mathrm{A}[1 . . \mathrm{i}-1]=\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{i}-1}$
- Recall: e_{2} is event that $\mathrm{A}[\mathrm{i}]=\mathrm{x}_{\mathrm{i}}$
- $\operatorname{Pr}\left[\mathrm{e}_{1} \cap \mathrm{e}_{2}\right]=\operatorname{Pr}\left[\mathrm{e}_{2} \mid \mathrm{e}_{1}\right] \operatorname{Pr}\left[\mathrm{e}_{1}\right]$
- $\operatorname{Pr}\left[e_{2} \mid \mathrm{e}_{1}\right]=\mathrm{I} /(\mathrm{n}-\mathrm{i}+\mathrm{I})$ because
- x_{i} is available in $A[i . . n]$ to be chosen since $e_{,}$already occurred and did not include x_{i}
- every element in A[i..n] is equally likely to be chosen
- $\operatorname{Pr}\left[\mathrm{e}_{\mathrm{I}}\right]=(\mathrm{n}-(\mathrm{i}-\mathrm{I}))!/ \mathrm{n}!$ by inductive hypothesis
- So $\operatorname{Pr}\left[e_{1} \cap e_{2}\right]=[I /(n-i+I)] \cdot[(n-(i-I))!/ n!]$
- After the last iteration (the n-th), the inductive hypothesis tells us that

A[I..n] equals each permutation of n elements from $\{1, \ldots, n\}$ with probability $(n-n)!/ n!=1 / n!$

- Thus the algorithm gives us a uniform random permutation.

