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Goal of this Lecture

• Recall the basic asymptotic notations such as Big 
Oh, Big Omega, Big Theta, and little oh. 

• Recall some basic properties of these notations

• Give some motivation why these notions are 
defined in the way they are. 

• Give some examples of their usage. 
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Summary 
Let g: N->C be a real or complex valued function on the natural 
numbers. 

O(g) = { f: N-> C | ∃u>0 ∃n0 ∈N

                |f(n)| <= u|g(n)| for all n>= n0 }

Ω(g) = { f: N-> C | ∃d>0 ∃n0 ∈N

                d|g(n)| <= |f(n)| for all n>= n0 }

Θ(g) = { f: N-> C | ∃u,d>0 ∃n0 ∈N

   d|g(n)| <= |f(n)| <= u|g(n)| for all n>= n0 }
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Time Complexity
• When estimating the time-complexity of algorithms, 

we simply want count the number of operations. We 
want to be

• independent of the compiler used (esp. about details 
concerning the number of instructions generated 
per high-level instruction), 

• independent of optimization settings, and 
architectural details. 

! This means that performance should only be compared 
up to multiplication by a constant. 

• We want to ignore details such as initial filling the 
pipeline. Therefore, we need to ignore the irregular 
behavior for small n.
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Big Oh
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Big Oh Notation

Let f,g: N -> R be function from the natural 
numbers to the set of real numbers. 

We write f ∈ O(g) if and only if there exists 
some real number n0 and a positive real 
constant u such that 

! ! ! |f(n)| <= u|g(n)| 

for all n in S satisfying n>= n0
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Big Oh

Let g: N-> C be a function. 

Then O(g) is the set of functions

O(g) = { f: N-> C | there exists a constant u and a 
natural number n0 such that 

! |f(n)| <= u|g(n)| for all  n>= n0 }
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Notation

We have 

! O(n2) ⊆ O(n3) 

but it is usually written as 

!  O(n2) = O(n3) 

This does not mean that the sets are equal!!!! The 
equality sign should be read as ‘is a subset of’. 
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Notation

We write n2 = O(n3),

[ read as: n2  is contained in O(n3) ] 

But we never write 

! O(n3) = n2
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Example O(n2)
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Big Oh Notation
The Big Oh notation was introduced by the number 
theorist Paul Bachman in 1894. It perfectly 
matches our requirements on measuring time 
complexity. 

Example: 

! ! 4n3+3n2+6 in O(n3)

The biggest advantage of the notation is that 
complicated expressions can be dramatically 
simplified.
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Quiz

Does O(1) contain only the constant functions?
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Tool 1: Limits
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Limit

Let (xn) be a sequence of real numbers.

We say that µ is the limit of this sequence of 
numbers and write  

! µ = limn->∞ xn 

if and only if for each ε > 0 there exists a natural 
number n0 such that |xn -µ |< ε for all n >= n0 
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µ? µ!

15Monday, September 3, 2012



Limit – Again!

Let (xn) be a sequence of real numbers.

We say that µ is the limit of this sequence of 
numbers and write  

! µ = limn->∞ xn 

if and only if for each ε > 0 there exists a natural 
number n0 such that |xn -µ |< ε for all n >= n0 
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How do we prove that g 
= O(f)?
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Big versus Little Oh

O(g) = { f: N-> C | ∃u>0 ∃n0 ∈N

                |f(n)| <= u|g(n)| for all n>= n0 }

o(g) = { f: N-> C | limn->∞  |f(n)|/|g(n)| = 0 }
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Quiz

It follows that o(f) is a subset of O(f).

Why? 
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Quiz

What does f = o(1) mean?

Hint:

o(g) = { f: N-> C | limn->∞  |f(n)|/|g(n)| = 0 }
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Quiz

Some computer scientists consider little oh notations 
too sloppy. 

For example, 1/n+1/n2 is o(1)

but they might prefer 1/n+1/n2  = O(1/n).

Why is that?
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Tool 2: Limit Superior
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Limits? There are no 
Limits!

The limit of a sequence might not exist. 

For example, if f(n) = 1+(-1)n then

! limn->∞ f(n) 

does not exist.
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Least Upper Bound 
(Supremum)

The supremum b of a set of real numbers S is the 
defined as the smallest real number b such that 
b>=s for all s in S.  

 We write b = sup S. 

• sup {1,2,3} = 3,

• sup {x : x2 <2} = sqrt(2),

• sup {(-1)^n – 1/n : n>=0 } = 1.   
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The Limit Superior

The limit superior of a sequence (xn) of real 
numbers is defined as 

lim supn ->∞ xn =  limn ->∞ ( sup { xm : m>=n})

[Note that the limit superior always exists 
in the extended real line (which includes 
±∞), as sup { xm : m>=n}) is a monotonically 
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The Limit Superior

The limit superior of a sequence of real numbers is equal 
to the greatest accumulation point of the sequence. 
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Necessary and Sufficient Condition
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Big Omega
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Big Omega Notation

Let f, g: N-> R be functions from the set of 
natural numbers to the set of real numbers.

We write g ∈ Ω(f) if and only if there 
exists some real number n0 and a positive 
real constant C such that 

! ! ! |g(n)| >= C|f(n)| 

for all n in N satisfying n>= n0.
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Big Omega

Theorem: f∈Ω(g) iff lim infn->∞|f(n)/g(n)|>0.

Proof: If lim inf |f(n)/g(n)|= C>0, then we 
have for each ε>0 at most finitely many 
positive integers satisfying |f(n)/g(n)|< C-ε. 
Thus, there exists an n0 such that 

! |f(n)| ≥ (C-ε)|g(n)|
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Big Theta
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Big Theta Notation

Let S be a subset of the real numbers (for 
instance, we can choose S to be the set of natural 
numbers).

If f and g are functions from S to the real 
numbers, then we write g ∈ Θ(f) if and only if 

there exists some real number n0 and positive real 
constants C and C’ such that 

! ! C|f(n)|<= |g(n)| <= C’|f(n)| 
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Examples
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Sums

• 1+2+3+…+n = n(n+1)/2 

• 12 +22 +32 +…+n2 = n(n+1)(2n+1)/6

We might prefer some simpler formula, especially 
when looking at sum of cubes, etc. 

The first sum is approximately equal to n2/2,   as 
n/2 is much smaller compared to n2/2 for large 
n. The second sum is approximately equal to n3/3 
plus smaller terms. 
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Approximate Formulas

( complicated function of n)

= (simple function of n) 

+ (bound for the size of the error in terms of n)

35Monday, September 3, 2012



Approximate Formulas

Instead of 

12 +22 +32 +…+n2 = n3/3+ n2/2 + n/6

we might write 

12 +22 +32 +…+n2 = n3/3 + O(n2)
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Approximate Formulas

If we write f(n) = g(n)+O(h(n)), then this means that 
there exists a constant u>0 and a natural number 
n0 such that 

! |f(n)-g(n)| <= u|h(n)|

for all n>=n0.
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Bold Conjecture

1k+2k+3k+…+nk = nk+1/(k+1) + O(nk)
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Proof

Write S(n) = 1k +2k +3k +…+nk. We try to estimate S(n).

 

S(n) < ∫1
n+1xk dx

    < (n+1)k+1/(k+1)
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Proof
Write S(n) = 1k +2k +3k +…+nk. We try to estimate S(n).

S(n) > ∫0
n xk dx

     = nk+1/(k+1)
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Proof 

We have shown that

nk+1/(k+1) < 1k +2k +3k +…+nk < (n+1)k+1/(k+1).

Let’s subtract nk+1/(k+1) to get

0< 1k +2k +3k +…+nk – nk+1/(k+1) 

  < ((n+1) k+1-nk+1 )/(k+1)
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Proof
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End of Proof

It follows that 

1k +2k +3k +…+nk = nk+1/(k+1) + O(nk)

holds! 
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Harmonic Number
The Harmonic number Hn is defined as

! Hn = 1+1/2+1/3+…+1/n.

We have 

! Hn = ln n + γ + O(1/n)

where γ is the Euler-Mascheroni constant
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log n!

Recall that 1! = 1 and n! = (n-1)! n.

Theorem: log n! = Θ(n log n)

Proof: 

log n! = log 1 + log 2 + … + log n

! <= log n + log n + … + log n = n log n 

Hence, log n! = O(n log n). 
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log n! 
On the other hand,

log n! = log 1 + log 2 + … + log n

! >= log (⎣(n+1)/2⎦) + … + log n

! >= (⎣(n+1)/2⎦) log (⎣(n+1)/2⎦)

! >= n/2 log(n/2) 

! = Ω(n log n) 

For the last step, note that 

lim infn->∞ (n/2 log(n/2))/(n log n) = ½.  
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Reading Assignment

• Read Chapter 1-3 in [CLRS]

• Chapter 1 introduces the notion of an algorithm

• Chapter 2 analyzes some sorting algorithms

• Chapter 3 introduces Big Oh notation 
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