Asymptotic Notations CSCE 411 Design and Analysis of Algorithms

Andreas Klappenecker

Goal of this Lecture

- Recall the basic asymptotic notations such as Big Oh, Big Omega, Big Theta, and little oh.
- Recall some basic properties of these notations
- Give some motivation why these notions are defined in the way they are.
- Give some examples of their usage.

Summary

Let g: $N \rightarrow C$ be a real or complex valued function on the natural numbers.

```
O(g) = \{ f: N \rightarrow C \mid \exists u > 0 \exists n_0 \in N \}
                       |f(n)| \le u|g(n)| for all n \ge n_0
\Omega(g) = \{ f: N \rightarrow C \mid \exists d > 0 \exists n_0 \in N \}
                       d|g(n)| \le |f(n)| for all n \ge n_0
\Theta(q) = \{ f: N \rightarrow C \mid \exists u, d > 0 \exists n_{o} \in N \}
    d|g(n)| \le |f(n)| \le u|g(n)| for all n \ge n_0
```

Time Complexity

- When estimating the time-complexity of algorithms, we simply want count the number of operations. We want to be
 - independent of the compiler used (esp. about details concerning the number of instructions generated per high-level instruction),
 - independent of optimization settings, and architectural details.

This means that performance should only be compared up to multiplication by a constant.

 We want to ignore details such as initial filling the pipeline. Therefore, we need to ignore the irregular behavior for small n.

Big Oh

Big Oh Notation

Let f,g: N -> R be function from the natural numbers to the set of real numbers.

Big Oh

Let g: N-> C be a function.

Then O(g) is the set of functions O(g) = { f: N-> C | there exists a constant u and a natural number n_o such that |f(n)| <= u|g(n)| for all n>= n_o }

Notation

We have $O(n^2) \subseteq O(n^3)$ but it is usually written as $O(n^2) = O(n^3)$

This does not mean that the sets are equal!!!! The equality sign should be read as `is a subset of'.

Notation

We write n² = O(n³), [read as: n² is contained in O(n³)]

But we never write $O(n^3) = n^2$

Example $O(n^2)$

Big Oh Notation

The Big Oh notation was introduced by the number theorist Paul Bachman in 1894. It perfectly matches our requirements on measuring time complexity.

Example:

 $4n^3+3n^2+6$ in O(n³)

The biggest advantage of the notation is that complicated expressions can be dramatically simplified.

Does O(1) contain only the constant functions?

Tool 1: Limits

Limit

Let (x_n) be a sequence of real numbers.
 We say that μ is the limit of this sequence of numbers and write

 $\mu = \lim_{n \to \infty} x_n$

if and only if for each $\varepsilon > 0$ there exists a natural number n₀ such that $|x_n - \mu| < \varepsilon$ for all n >= n₀

Limit – Again!

Let (x_n) be a sequence of real numbers.

We say that μ is the limit of this sequence of numbers and write

 $\mu = \lim_{n \to \infty} x_n$

if and only if for each ε > 0 there exists a natural <u>number no such that |x</u> -μ |< ε for all n >= no

How do we prove that g = O(f)?

Lemma 1. Let f and g be functions from the positive integers to the complex numbers such that $g(n) \neq 0$ for all $n \geq n_0$ for some positive integer n_0 . If the limit $\lim_{n\to\infty} |f(n)/g(n)|$ exists and is finite then f(n) = O(g(n)).

Proof. If $\lim_{n\to\infty} |f(n)/g(n)| = C$, then for each $\epsilon > 0$ there exists a positive integer $n_0(\epsilon)$ such that $C - \epsilon \leq |f(n)/g(n)| \leq C + \epsilon$ for all $n \geq n_0$; this shows that $|f(n)| \leq (C + \epsilon)|g(n)|$ for all integers $n \geq n_0(\epsilon)$. It follows that f(n) = O(g(n)).

Big versus Little Oh

$O(g) = \{ f: \mathbb{N} \rightarrow C \mid \exists u \geq 0 \exists n_0 \in \mathbb{N} \\ |f(n)| \leq u|g(n)| \text{ for all } n \geq n_0 \}$

 $o(g) = \{ f: N \rightarrow C \mid \lim_{n \rightarrow \infty} |f(n)|/|g(n)| = 0 \}$

It follows that o(f) is a subset of O(f).

What does f = o(1) mean?

Hint:

 $o(g) = \{ f: N \rightarrow C \mid \lim_{n \rightarrow \infty} |f(n)|/|g(n)| = 0 \}$

Some computer scientists consider little oh notations too sloppy. For example, $1/n+1/n^2$ is o(1)but they might prefer $1/n+1/n^2 = O(1/n)$.

Why is that?

Tool 2: Limit Superior

Limits? There are no Limits!

The limit of a sequence might not exist.
For example, if f(n) = 1+(-1)ⁿ then
lim_{n→∞} f(n)
does not exist.

Least Upper Bound (Supremum)

The supremum b of a set of real numbers S is the defined as the smallest real number b such that b>=s for all s in S.

We write $b = \sup S$.

- sup {1,2,3} = 3,
- sup ${x : x^2 < 2} = sqrt(2)$,
- $\sup \{(-1)^n 1/n : n \ge 0\} = 1.$

The Limit Superior

The limit superior of a sequence (x_n) of real numbers is defined as

 $\lim \sup_{n \to \infty} x_n = \lim_{n \to \infty} (\sup \{ x_m : m \ge n \})$

[Note that the limit superior always exists in the extended real line (which includes $\pm\infty$), as sup { $x_m : m \ge n$ }) is a monotonically

The Limit Superior

Necessary and Sufficient Condition

Lemma 2. Let f and g be functions from the positive integers to the complex numbers such that $g(n) \neq 0$ for all $n \geq n_0$ for some positive integer n_0 . We have $\limsup_{n\to\infty} |f(n)/g(n)| < \infty$ if and only if f(n) = O(g(n)).

Proof. If $\limsup_{n\to\infty} |f(n)/g(n)| = C$, then for each $\epsilon > 0$ we have

 $|f(n)|/|g(n)| > C + \epsilon$

for at most finitely many positive integers; so $|f(n)| \leq (C + \epsilon)|g(n)|$ holds for all integers $n \geq n_0(\epsilon)$ for some positive integer $n_0(\epsilon)$, and this proves that f(n) = O(g(n)).

Conversely, if f(n) = O(g(n)), then there exists a positive integer n_0 and a constant C such that $g(n) \neq 0$ and $|f(n)|/|g(n)| \leq C$ for all $n \geq n_0$. This implies that $\limsup_{n \to \infty} |f(n)/g(n)| \leq C$.

Big Omega

Big Omega Notation

Let f, g: N-> R be functions from the set of natural numbers to the set of real numbers.

We write $g \in \Omega(f)$ if and only if there exists some real number n_0 and a positive real constant C such that $|g(n)| \ge C|f(n)|$ for all n in N satisfying n>= n_0 .

Big Omega

Theorem: f∈Ω(g) iff lim inf_{n→∞} |f(n)/g(n)|>0.
Proof: If lim inf |f(n)/g(n)|= C>0, then we have for each ε>0 at most finitely many positive integers satisfying |f(n)/g(n)|< C-ε. Thus, there exists an n₀ such that

 $|f(n)| \ge (C-\varepsilon)|g(n)|$

Big Theta

Big Theta Notation

Let S be a subset of the real numbers (for instance, we can choose S to be the set of natural numbers).

If f and g are functions from S to the real numbers, then we write $g \in \Theta(f)$ if and only if

there exists some real number n_o and positive real constants C and C' such that

 $C|f(n)| \le |g(n)| \le C'|f(n)|$

Examples

Sums

- 1+2+3+...+n = n(n+1)/2
- $1^2 + 2^2 + 3^2 + ... + n^2 = n(n+1)(2n+1)/6$

We might prefer some simpler formula, especially when looking at sum of cubes, etc.

The first sum is approximately equal to $n^2/2$, as n/2 is much smaller compared to $n^2/2$ for large n. The second sum is approximately equal to $n^3/3$ plus smaller terms.

Approximate Formulas

(complicated function of n)
= (simple function of n)
+ (bound for the size of the error in terms of n)

Approximate Formulas

Instead of $1^{2} + 2^{2} + 3^{2} + ... + n^{2} = n^{3}/3 + n^{2}/2 + n/6$ we might write $1^{2} + 2^{2} + 3^{2} + ... + n^{2} = n^{3}/3 + O(n^{2})$

Approximate Formulas

If we write f(n) = g(n)+O(h(n)), then this means that there exists a constant u>O and a natural number n_0 such that

 $|f(n)-g(n)| \le u|h(n)|$ for all $n>=n_0$.

Bold Conjecture

$1^{k}+2^{k}+3^{k}+...+n^{k} = n^{k+1}/(k+1) + O(n^{k})$

Write $S(n) = 1^k + 2^k + 3^k + \dots + n^k$. We try to estimate S(n).

$$S(n) < \int_{1}^{n+1} x^{k} dx$$

< $(n+1)^{k+1}/(k+1)$

Write $S(n) = 1^k + 2^k + 3^k + \dots + n^k$. We try to estimate S(n).

We have shown that n^{k+1}/(k+1) < 1^k +2^k +3^k +...+n^k < (n+1)^{k+1}/(k+1). Let's subtract n^{k+1}/(k+1) to get O< 1^k +2^k +3^k +...+n^k - n^{k+1}/(k+1) < ((n+1)^{k+1}-n^{k+1})/(k+1)

$$\frac{1}{k+1}((n+1)^{k+1} - n^{k+1}) = \frac{1}{k+1}\left(\sum_{i=0}^{k+1} \binom{k+1}{i}n^i - n^{k+1}\right)$$
$$\leq \sum_{i=0}^k \binom{k+1}{i}n^i$$
$$\leq \text{(some constant)}n^k$$

End of Proof

It follows that $1^{k} + 2^{k} + 3^{k} + ... + n^{k} = n^{k+1}/(k+1) + O(n^{k})$ holds!

Harmonic Number The Harmonic number H_n is defined as $H_n = 1 + 1/2 + 1/3 + ... + 1/n.$ We have $H_n = \ln n + \gamma + O(1/n)$ where γ is the Euler-Mascheroni constant $\gamma = \lim_{n \to \infty} \left| \left(\sum_{k=1}^{n} \frac{1}{k} \right) - \ln(n) \right| = \int_{1}^{\infty} \left(\frac{1}{|x|} - \frac{1}{x} \right) \, dx.$

log n!

Recall that 1! = 1 and n! = (n-1)! n. Theorem: $\log n! = \Theta(n \log n)$ Proof: log n! = log 1 + log 2 + ... + log n $<= \log n + \log n + \dots + \log n = n \log n$ Hence, $\log n! = O(n \log n)$.

log n!

On the other hand,

log n! = log 1 + log 2 + ... + log n >= log (|(n+1)/2|) + ... + log n $>= (|(n+1)/2|) \log (|(n+1)/2|)$ >= $n/2 \log(n/2)$ = $\Omega(n \log n)$ For the last step, note that $\lim_{n\to\infty} (n/2 \log(n/2))/(n \log n) = \frac{1}{2}$.

Reading Assignment

- Read Chapter 1–3 in [CLRS]
- Chapter 1 introduces the notion of an algorithm
- Chapter 2 analyzes some sorting algorithms
- Chapter 3 introduces Big Oh notation