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Coin Changing
Suppose we have n types of coins with values 

v[1] > v[2] > … > v[n] > 0

Given an amount C, a positive integer, the following 
algorithm tries to give change for C: 

m[1] := 0; m[2]:=0; … ; m[n] := 0; // multiplicities of coins
for i = 1 to n do 

 while C >= v[i] do

  C := C – v[i]; m[i]++;

 od;

od;
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Coin Changing

Suppose that v[1] = 5; v[2] =2; v[1] = 1;
Let C = 14. 
Then the algorithm calculates
m[1] = 2 and m[2] = 2
This gives the correct amount of change:
C = v[1]*m[1]+v[2]*m[2] = 5*2+2*2 = 14
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Correctness
Suppose we have n types of coins with values 

v[1] > v[2] > … > v[n] > 0

Input: A positive integer C 

m[1] := 0; m[2]:=0; … ; m[n] := 0; // multiplicities of coins
for i = 1 to n do 

 while C >= v[i] do

  C := C – v[i]; m[i]++;

 od;

od;
// When is the algorithm correct for all inputs C?
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Optimality
Suppose we have n types of coins with values 

v[1] > v[2] > … > v[n] = 1

Input: A positive integer C 

m[1] := 0; m[2]:=0; … ; m[n] := 0; // multiplicities of coins
for i = 1 to n do 

 while C >= v[i] do

  C := C – v[i]; m[i]++;

 od;

od;
// Does the algorithm gives the least number of coins? 
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Example
v[1] = 5; v[2] = 2; v[3] = 1; 
If C<2, then the algorithm gives a single coin, which is 

optimal. 

If C<5, then the algorithm gives at most 2 coins: 
C = 4 = 2*2 // 2 coins

C = 3 = 2+1 // 2 coins

C = 2 = 2 // 1 coins

In each case this is optimal.

If C >= 5, then the algorithm uses the most coins of value 5 
and then gives an optimal change for the remaining value < 
5. One cannot improve upon this solution. Let us see why.   
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Example
Any optimal solution to give change for C with

C = v[1]*m[1] + v[2]*m[2] + v[3] * m[3]
with v[1] = 5; v[2] = 2; v[3] = 1;  

must satisfy

a) m[3] <= 1 // if m[3] >= 2, replace two 1’s with 2.

b) 2*m[2]   + m[1] < 5 // otherwise use a 5 

c) If C >= 5*k, then m[1] >= k // otherwise solution violates b)
Thus, any optimal solution greedily chooses maximal number of 

5s. The remaining value in the optimal value has to choose 
maximal number of 2s, so any optimal solution is the greedy 
solution!
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Example 2 

Let v[1]=4; v[2]=3; v[3]=1;

The algorithm yields 3 coins of change for
C = 6 namely 6=4+1+1

Is this optimal? 
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Example 2 
Any optimal solution to give change for C with
C = v[1]*m[1] + v[2]*m[2] + v[3] * m[3]

with v[1] = 4; v[2] = 3; v[3] = 1;  

must satisfy

a) m[3] <= 2 // if m[3] > 2, replace three 1’s with a 3.

b) We cannot have both m[3]>0 and m[2]>0, for otherwise we 
could use a 4 to reduce the coin count. 

c) m[2]<4 // otherwise use 4 to reduce number of coins 

Greedy will fail in general. One can still find an optimal 
solution efficiently, but the solution is not unique. Why? 
9=3+3+3=4+4+1
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How Likely is it Optimal? 

Let N be a positive integer. 
Let us choose integer a and b uniformly at 

random subject to N>b>a>1. Then the greedy 
coin-changing algorithm with 

v[1]=b; v[2]=a; v[3]=1 
gives always optimal change with probability 
8/3 N-1/2 + O(1/N)
as Thane Plambeck has shown [AMM 96(4), April 

1989, pg 357]. 
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Greedy Algorithms
The development of a greedy algorithm can be separated into 
the following steps:
1.Cast the optimization problem as one in which we make a 
choice and are left with one subproblem to solve.

2.Prove that there is always an optimal solution to the original 
problem that makes the greedy choice, so that the greedy 
choice is always safe. 

3.Demonstrate that, having made the greedy choice, what 
remains is a subproblem with the property that if we combine 
an optimal solution to the subproblem with the greedy choice 
that we have made, we arrive at an optimal solution to the 
original problem. 13
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Greedy-Choice Property

The greedy choice property is that a 
globally optimal solution can be arrived at 
by making a locally optimal (=greedy) 
choice. 
 

14
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Optimal Substructure

A problem exhibits optimal substructure 
if and only if an optimal solution to the 
problem contains within it optimal 
solutions to subproblems. 

15
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Greedy Algorithms

Greedy algorithms are easily designed, 
but correctness of the algorithm is 
harder to show. 

We will look at some general principles 
that allow one to prove that the greedy 
algorithm is correct.
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Matroids
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Matroid

Let S be a finite set, and F a nonempty family 
of subsets of S, that is, F⊆ P(S).
We call (S,F) a matroid if and only if
M1)  If B∈F and A ⊆ B, then A∈F.
 [The family F is called hereditary]
M2) If A,B∈F and |A|<|B|, then there 
 exists x in B\A such that A∪{x} in F
 [This is called the exchange property]  
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Example 1 (Matric Matroids)
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Example 1 (Matric Matroids)
Let M be a matrix. 
Let S be the set of rows of M and 
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Example 1 (Matric Matroids)
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Example 1 (Matric Matroids)
Let M be a matrix. 
Let S be the set of rows of M and 
F = { A | A⊆S, A is linearly independent } 
Claim:  (S,F) is a matroid.
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Example 1 (Matric Matroids)
Let M be a matrix. 
Let S be the set of rows of M and 
F = { A | A⊆S, A is linearly independent } 
Claim:  (S,F) is a matroid.
Clearly, F is not empty (it contains every row of M). 
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Example 1 (Matric Matroids)
Let M be a matrix. 
Let S be the set of rows of M and 
F = { A | A⊆S, A is linearly independent } 
Claim:  (S,F) is a matroid.
Clearly, F is not empty (it contains every row of M). 
M1) If B is a set of linearly independent rows of M, 

then any subset A of M is linearly independent. Thus, 
F is hereditary.
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Example 1 (Matric Matroids)
Let M be a matrix. 
Let S be the set of rows of M and 
F = { A | A⊆S, A is linearly independent } 
Claim:  (S,F) is a matroid.
Clearly, F is not empty (it contains every row of M). 
M1) If B is a set of linearly independent rows of M, 

then any subset A of M is linearly independent. Thus, 
F is hereditary.

M2) If A, B are sets of linearly independent rows of M, 
and |A|<|B|, then dim span A < dim span B. Choose a 
row x in B that is not contained in span A. Then A∪ 
{x} is a linearly independent subset of rows of 
M.Therefore, F satisfied the exchange property.   
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Undirected Graphs

Let V be a finite set, 
E a subset of { e | e ⊆ V, |e|=2 } 
Then (V,E) is called an undirected graph. 
We call V the set of vertices and E the 
set of edges of the graph.a b

c d

V = {a,b,c,d}

E = {  {a,b}, {a,c}, {a,d},       
 {b,d}, {c,d} }
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Induced Subgraphs

Let G=(V,E) be a graph.  

We call a graph (V,E’) an induced subgraph of G 
if and only if its edge set E’ is a subset of E. 
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Spanning Trees

Given a connected graph G, a spanning 
tree of G is an induced subgraph of G 
that happens to be a tree and connects all 
vertices of G. If the edges are weighted, 
then a spanning tree of G with minimum 
weight is called a minimum spanning tree.

 

a b

c d

1

3

5

42
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Example 2 (Graphic Matroids)
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Example 2 (Graphic Matroids)

Let G=(V,E) be an undirected graph.
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Example 2 (Graphic Matroids)

Let G=(V,E) be an undirected graph.
Choose S = E and 
F = { A | H = (V,A) is an induced subgraph of G such that H 
is a forest }.
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Example 2 (Graphic Matroids)

Let G=(V,E) be an undirected graph.
Choose S = E and 
F = { A | H = (V,A) is an induced subgraph of G such that H 
is a forest }.
Claim: (S,F) is a matroid.  

M1) F is a nonempty hereditary set system. 
M2) Let A and B in F with |A| < |B|. Then (V,B) has fewer 
trees than (V,A). Therefore, (V,B) must contain a tree T 
whose vertices are in different trees in the forest (V,A). 
One can add the edge x connecting the two different 
trees to A and obtain another forest (V,A∪{x}). 
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Weight Functions

A matroid (S,F) is called weighted if it equipped 
with a weight function w: S->R+, i.e., all weights 
are positive real numbers.  
If A is a subset of S, then 
 w(A) := Σa in A w(a).

Weight functions of this form are sometimes 
called “linear” weight functions.
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Greedy Algorithm for Matroids

Greedy(M=(S,F),w)   // maximizing version
A := ∅;
Sort S into monotonically decreasing order by 
weight w. 
for each x in S taken in monotonically 
decreasing order do
 if A∪{x} in F then A := A∪{x}; fi; 
od;
return A;
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Correctness

Theorem: Let M= (S,F) be a weighted matroid 
with weight function w. Then Greedy(M,w) 
returns a set in F of maximal weight. 

[Thus, even though Greedy algorithms in general do not 
produce optimal results, the greedy algorithm for 
matroids does! This algorithm is applicable for a wide 
class of problems. Yet, the correctness proof for 
Greedy is not more difficult than the correctness for 
special instance such as Huffman coding. This is 
economy of thought!]
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Correctness

• Seeking a contradiction, suppose that Greedy returns 
C in F, but there exists B in F such that w(B)>w(C). 

• Since w is nonnegative, we can assume that B,C are 
bases;  say B={b1,...,bn} and C={c1,...,cn}. 

• Let i be the smallest index such that                         
w(b1)<=w(c1),...,w(bi-1)<=w(ci-1), and w(bi)>w(ci). 

• Greedy would have picked bi in the ith step . Indeed, 
{b1,...,bi} and {c1,...,ci-1} are in F, hence {c1,...,ci-1,bi} in F 
by the exchange axiom. Thus w(B)<=W(C), 
contradiction!!!

27
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Complexity

Let n = |S| = # elements in the set S.
Sorting of S: O(n log n)

The for-loop iterates n times. In the body of 
the loop one needs to check whether A∪{x} is in 
F. If each check takes f(n) time, then the loop 
takes O(n f(n)) time. 

Thus, Greedy takes O(n log n + n f(n)) time.  
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Minimizing or Maximizing?

Let M=(S,F) be a matroid. 

The algorithm Greedy(M,w) returns a set A in F 
maximizing the weight w(A). 

If we would like to find a set A in F with minimal 
weight, then we can use Greedy with weight function 
 w’(a) = m-w(a)  for a in A,
where m is a real number such that m > maxs in S w(s).  

Thursday, September 13, 2012



Matric Matroids

Thursday, September 13, 2012



Matric Matroids

Let M be a matrix. Let S be the set of rows of 
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Matric Matroids

Let M be a matrix. Let S be the set of rows of 
the matrix M and 
F = { A | A⊆S, A is linearly independent }.

Weight function w(A)=|A|. 

What does Greedy((S,F),w) compute? 
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Matric Matroids

Let M be a matrix. Let S be the set of rows of 
the matrix M and 
F = { A | A⊆S, A is linearly independent }.

Weight function w(A)=|A|. 

What does Greedy((S,F),w) compute? 
The algorithm yields a basis of the vector space 
spanned by the rows of the matrix M. 
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Graphic Matroids

Let G=(V,E) be an undirected connected graph.
Let S = E and F = { A | H = (S,A) is an induced subgraph 
of G such that H is a forest }.

Let w be a weight function on E. 
Define w’(a)=m-w(a), where m>w(a), for all a in A. 
  
Greedy((S,F), w’) returns a minimum spanning tree of G. 
This algorithm in known as Kruskal’s algorithm. 
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Kruskal's MST algorithm
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Consider the edges in increasing order of weight,
add an edge iff it does not cause a cycle
[Animation taken from Prof. Welch’s lecture notes] 
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Conclusion

Matroids characterize a group of 
problems for which the greedy algorithm 
yields an optimal solution. 

Kruskals minimum spanning tree algorithm 
fits nicely into this framework. 
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