Longest Common Subsequence

Andreas Klappenecker

Subsequences

Suppose you have a sequence

$$
x=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle
$$

of elements over a finite set S.
A sequence $Z=\left\langle z_{1}, z_{2}, \ldots, z_{k}\right\rangle$ over S is called a subsequence of X if and only if it can be obtained from X by deleting elements.
Put differently, there exist indices $i_{1}<i_{2}<. . .<i_{k}$ such that

$$
z_{a}=x_{i_{a}}
$$

for all a in the range $1<=a<=k$.

Common Subsequences

Suppose that X and Y are two sequences over a set S.

We say that Z is a common subsequence of X and Y if and only if
Z is a subsequence of X

- Z is a subsequence of Y

The Longest Common

Given two sequences X and Y over a set S, the longest common subsequence problem asks to find a common subsequence of X and Y that is of maximal length.

Naïve Solution

Let X be a sequence of length m,
and Y a sequence of length n.
Check for every subsequence of X whether it is a subsequence of Y, and return the longest common subsequence found.
There are 2^{m} subsequences of X. Testing a sequences whether or not it is a subsequence of Y takes $O(n)$ time. Thus, the naïve algorithm would take $O\left(n 2^{m}\right)$ time.

Divide and Conquer

Can we use divide-and-conquer to solve this problem?

Dynamic Programming

Let us try to develop a dynamic programming solution to the LCS problem.

Prefix

$$
\text { Let } X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle \text { be a sequence. }
$$

We denote by X_{i} the sequence

$$
x_{i}=\left\langle x_{1}, x_{2}, \ldots, x_{i}\right\rangle
$$

and call it the $i^{\text {th }}$ prefix of X.

LCS Notation

Let X and Y be sequences.

We denote by $\operatorname{LCS}(X, Y)$ the set of longest common subsequences of X and Y.

Optimal Substructure

Let $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$
and $Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ be two sequences.
Let $Z=\left\langle z_{1}, z_{2}, \ldots, z_{k}\right\rangle$ is any LCS of X and Y.
a) If $x_{m}=y_{n}$ then certainly $x_{m}=y_{n}=z_{k}$
and Z_{k-1} is in $\operatorname{LCS}\left(X_{m-1}, Y_{n-1}\right)$

Optimal Substructure (2)

Let $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$
and $Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ be two sequences.
Let $Z=\left\langle z_{1}, z_{2}, \ldots, z_{k}\right\rangle$ is any LCS of X and Y.
b) If $x_{m}<>y_{n}$ then $x_{m}<>z_{k}$ implies that Z is in $\operatorname{LCS}\left(X_{m-1}, Y\right)$
c) If $x_{m}<>y_{n}$ then $y_{n}<>z_{k}$ implies that z is in $\operatorname{LCS}\left(X, Y_{n-1}\right)$

Overlapping Subproblems

If $x_{m}=y_{n}$ then we solve the subproblem to find an element in $\operatorname{LCS}\left(X_{m-1}, Y_{n-1}\right)$ and append x_{m}

If $x_{m}<>y_{n}$ then we solve the two subproblems of finding elements in $\operatorname{LCS}\left(X_{m-1}, Y_{n-1}\right)$ and $\operatorname{LCS}\left(X_{m-1}, Y_{n-1}\right)$ and choose the longer one.

Recursive Solution

Let X and Y be sequences.
Let $c[i, j]$ be the length of an element in $\operatorname{LCS}\left(X_{i}, Y_{j}\right)$.

Dynamic Programming Solution

To compute length of an element in $\operatorname{LCS}(X, Y)$ with X of length m and Y of length n, we do the following:

- Initialize first row and first column of c with 0 .
- Calculate $c[1, j]$ for $1<=j<=n$,

$$
c[2, j] \text { for } 1<=j<=n
$$

Return c[m, n]
-Complexity O(mn).

Dynamic Programming Solution (2)

How can we get an actual longest common subsequence?

Store in addition to the array c an array b pointing to the optimal subproblem chosen when computing $c[i, j]$.

Example

	y_{j}	B	D	C	A
x_{j}	0	0	0	0	0
A	0	$\uparrow 0$	$\uparrow 0$	\uparrow	1
B	0	1	1	1	\uparrow
C	0	$\uparrow 1$	$\uparrow 1$	\uparrow^{2}	2
B	0	1	\uparrow^{1}	\boldsymbol{R}^{2}	\uparrow^{2}

Start at b[m,n]. Follow the arrows. Each diagonal array gives one element of the LCS.

Animation

http://wordaligned.org/articles/longest-common-subsequence

LES (XI)

$\mathrm{m} \leftarrow$ length [X]
$\mathrm{n} \leftarrow$ length [Y]
for $i \leftarrow 1$ to m do $c[i, 0] \leftarrow 0$
for $\mathrm{j} \leftarrow 1$ to n do $c[0, j] \leftarrow 0$

LES (XI)

for $i \leftarrow 1$ to m do
 else

else
return c and b

Greedy Algorithms

There exists a greedy solution to this problem that can be advantageous when the size of the alphabet S is small.

