Longest Common Subsequence

Andreas Klappenecker

Subsequences

Suppose you have a sequence

$$X = \langle x_1, x_2, ..., x_m \rangle$$

of elements over a finite set S.

A sequence $Z = \langle z_1, z_2, ..., z_k \rangle$ over S is called a subsequence of X if and only if it can be obtained from X by deleting elements.

Put differently, there exist indices $i_1 < i_2 < ... < i_k$ such that

$$z_a = x_{i_a}$$

for all a in the range 1<= a <= k.

Common Subsequences

Suppose that X and Y are two sequences over a set S.

We say that Z is a common subsequence of X and Y if and only if

- Z is a subsequence of X
- Z is a subsequence of Y

The Longest Common

Given two sequences X and Y over a set 5, the longest common subsequence problem asks to find a common subsequence of X and Y that is of maximal length.

Naïve Solution

Let X be a sequence of length m, and Y a sequence of length n.

Check for every subsequence of X whether it is a subsequence of Y, and return the longest common subsequence found.

There are 2^m subsequences of X. Testing a sequences whether or not it is a subsequence of Y takes O(n) time. Thus, the naïve algorithm would take $O(n2^m)$ time.

Divide and Conquer

Can we use divide-and-conquer to solve this problem?

Dynamic Programming

Let us try to develop a dynamic programming solution to the LCS problem.

Prefix

Let $X = \langle x_1, x_2, ..., x_m \rangle$ be a sequence.

We denote by X_i the sequence

$$X_i = \langle x_1, x_2, ..., x_i \rangle$$

and call it the ith prefix of X.

LCS Notation

Let X and Y be sequences.

We denote by LCS(X, Y) the set of longest common subsequences of X and Y.

Optimal Substructure

Let
$$X = \langle x_1, x_2, ..., x_m \rangle$$

and $Y = \langle y_1, y_2, ..., y_n \rangle$ be two sequences.
Let $Z = \langle z_1, z_2, ..., z_k \rangle$ is any LCS of X and Y.
a) If $x_m = y_n$ then certainly $x_m = y_n = z_k$
and Z_{k-1} is in LCS(X_{m-1} , Y_{n-1})

Optimal Substructure (2)

Let
$$X = \langle x_1, x_2, ..., x_m \rangle$$

and $Y = \langle y_1, y_2, ..., y_n \rangle$ be two sequences.

Let
$$Z = \langle z_1, z_2, ..., z_k \rangle$$
 is any LCS of X and Y.

- b) If $x_m \leftrightarrow y_n$ then $x_m \leftrightarrow z_k$ implies that Z is in LCS(X_{m-1} , Y)
- c) If $x_m \leftrightarrow y_n$ then $y_n \leftrightarrow z_k$ implies that Z is in LCS(X, Y_{n-1})

Overlapping Subproblems

If $x_m = y_n$ then we solve the subproblem to find an element in LCS(X_{m-1} , Y_{n-1}) and append x_m

If $x_m \leftrightarrow y_n$ then we solve the two subproblems of finding elements in $LCS(X_{m-1}, Y_{n-1})$ and $LCS(X_{m-1}, Y_{n-1})$ and choose the longer one.

Recursive Solution

Let X and Y be sequences.

Let c[i,j] be the length of an element in LCS(X_i, Y_j).

Dynamic Programming Solution

To compute length of an element in LCS(X,Y) with X of length m and Y of length n, we do the following:

- ·Initialize first row and first column of c with 0.
- •Calculate c[1,j] for 1 <= j <= n,</pre>
- c[2,j] for 1 <= j <= n

...

- •Return c[m,n]
- · Complexity O(mn).

Dynamic Programming Solution (2)

How can we get an actual longest common subsequence?

Store in addition to the array c an array b pointing to the optimal subproblem chosen when computing c[i,j].

Example

	$y_{ m j}$	В	D	C	A
x_{j}	0	0	0	0	0
A	0	1 0	10	1 0	\1
В	0	1	1	1	1
C	0	\1	† 1	2	2
В	0	1	1	1	♠²

Start at b[m,n]. Follow the arrows. Each diagonal array gives one element of the LCS.

Animation

http://wordaligned.org/articles/longestcommon-subsequence

LCS(X,Y)

```
m ← length[X]
n ← length[Y]
for i ← 1 to m do
    c[i,0] ← 0
for j ← 1 to n do
    c[0,j] ← 0
```

LCS(X,Y)

```
for i \leftarrow 1 to m do
for j \leftarrow 1 to n do
if x_i = y_i
c[i, j]^j \leftarrow c[i-1, j-1]+1
b[i, j] \leftarrow D''
               else
                      if c[i-1, j] \ge c[i, j-1]
c[i, j] \leftarrow c[i-1, j]
b[i, j] \leftarrow "U"
                                 c[i, j] ← c[i, j-1]
b[i, j] ← "L"
                      else
return c and b
```

Greedy Algorithms

There exists a greedy solution to this problem that can be advantageous when the size of the alphabet S is small.