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Motivation
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When we analyze the runtime of algorithms, we simply count
the number of operations. For example, the following loop

for k=110 ndo
square(k);

where square(k) is a function that has running time T2k?. Then
the total number of instructions is given by

TL—I—l ZTQ]{TQ

where Ti is the time for loop increment and comparison.
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The question is how to find closed form representations of

sums such as
T
) K
k=1

Of course, you can look up this particular sum. Perhaps you can
even guess the solution and prove it by induction. However,
neither of these "methods” are entirely satisfactory.
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Motivation
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The sum

may be regarded as a discrete analogue of the integral

/abg(x)dg;

We can evaluate the integral by finding a function
f(x) such that -~ f(z) = g(z), since the fundamental
theorem of calculus yields
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We would like to find a result that is analogous to the
fundamental theorem of calculus for sums. The calculus of
finite differences will allow us to find such a resulft.

Some benefits:
- Closed form evaluation of certain sums.

- The calculus of finite differences will explain the real meaning
of the Harmonic numbers (and why they occur so often in the
analysis of algorithms).
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Difference Operator
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Given a function g(n), we define the difference oper-
ator A as

Ag(n) = g(n +1) — g(n)

Let E denote the shift operator Fg(n) = g(n + 1),
and I the identity operator. Then

A=F-—1
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Examples
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a) Let f(n) = n. Then
e el —
b) Let f(n) = n®. Then
b s =21
¢) Let f(n) = n3. Then

o (n L =30t 3n+ 1.
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Falling Power
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We define the m-th falling power of n as
nt=nn—1)---(n—m+1)
tor m > 0. We have

At ==Ll
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Falling Power
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Theorem. We have

A2 — mn=l

Proof. By definition,

An=n+1)n---(n—m+ 2)
—n---(n—m+2)(n—m+1)
= mn---(n—m -+ 2)
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Negative Falling Powers

ek — 7 : . < ug’mb'““"""::x-'ﬂ!‘*-‘"‘;“"""1-5....""““"“'"“"‘14“‘;1”,. kel TS
Since
il pi= (g ),
we have

nZ/nt =n(n—1)/n=(n—1),

nt/n=n/l =n

so we expect that

n2/n—t =n+1
holds, which implies that

= g 1)
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Negative
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Similarly, we want

= )

SO
_9 1
et Iy
(n+1)(n+ 2)
We define
e 1
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Exercise
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, we have

ow that for m > 0
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Exponentials
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Let ¢ # 1 be a fixed real number. Then
T (e )",

In particular,
N2 =2
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Antidifference
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A function f(n) with the property that

is called the antidifference of the function g(n).

Example. The antidifference of the function g(n) =
n™ is given by
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Antidifference
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Example. The antidifference of the function g(n) =
c" is given by

Indeed,
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Fundamental Theorem of FDC
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Theorem. Let f(n) be an antiderivative of g( ).
Then

b
> 9(n)=f(b+1) - f(a).

Proof. We have

Nath) = ) Af(n)
= > (fln+1) - f(n))

n=—a

b+1 b

e - () =f(b+ 1) = f(a),

n=a-+1 n—a
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Example 1
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Suppose we want to find a closed form for the sum

1

An antiderivative of c" is ——c". Therefore, by the

fundamental theorem of finite difference, we have

65
64 1 SOhE =35
Tt n wiFi
E Gl C s
e =k et}
n=> 5
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Antid |fferen<:e
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We are going to denote an antidifference of a function

f(n) by
) fn)on

The on plays the same role as the dxr term in inte-
gration.
For example,

1
anén: ot
m + 1

when m # —1. What about m = —17

Wednesday, November 28, 2012



Harmonic Number's DISCF‘CTZ In
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We have

1 1

E n=Lén = H =] B e ey

2 n

Indeed,
1 1
n -+ 1

Thus, the antidifference of n=L is H,,.
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Lmear'l’ry
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Let f(n) and g(n) be two sequences and a and b two
constants. Then

Afaf(n) +bg(n)) = aAf(n)+bAg(n).

Consequently, the antidifferences are linear as well:

Z(af( )+ bg(n 5n—a2f 5n+ng(n)5n
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Example
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To solve our motlvatmg exa,mple we need to find a

closed form for the sum
>
k=1

Since k? = k% + k1, an antiderivative of k? is given

by
> Kok =) (k*+kbok = 1y L2
3 2
Thus, the sum
n+1 n+1
Zk2 LT R AN,
sk ; .
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Binomial Coefficients
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By Pascal’s rule for binomial coefficients, we have

n+1

(Z)+ (kZJ - (k+1

Therefore,

A(/«L):(Z)'

In other words,

Z(:) i (kil)

For example, this shows that

T

m + 1
k+1

)




