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Motivation

When we analyze the runtime of algorithms, we simply count 
the number of operations. For example, the following loop

for k = 1 to n do 

  square(k);

where square(k) is a function that has running time T2k2. Then 
the total number of instructions is given by 

where T1 is the time for loop increment and comparison. 

T1(n+ 1) +
n�

k=1

T2k
2
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Motivation

The question is how to find closed form representations of 
sums such as 

Of course, you can look up this particular sum. Perhaps you can 
even guess the solution and prove it by induction. However, 
neither of these “methods” are entirely satisfactory. 

n�

k=1

k2
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Motivation

The sum
b�

k=a

g(k)

may be regarded as a discrete analogue of the integral

� b

a
g(x)dx

We can evaluate the integral by finding a function
f(x) such that d

dxf(x) = g(x), since the fundamental
theorem of calculus yields

� b

a
g(x)dx = f(b)− f(a).
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Motivation

We would like to find a result that is analogous to the 
fundamental theorem of calculus for sums. The calculus of 
finite differences will allow us to find such a result. 

Some benefits: 

- Closed form evaluation of certain sums.

- The calculus of finite differences will explain the real meaning 
of the Harmonic numbers (and why they occur so often in the 
analysis of algorithms). 
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Difference Operator

Given a function g(n), we define the difference oper-
ator ∆ as

∆g(n) = g(n+ 1)− g(n)

Let E denote the shift operator Eg(n) = g(n + 1),
and I the identity operator. Then

∆ = E − I
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Examples

a) Let f(n) = n. Then

∆f(n) = n+ 1− n = 1.

b) Let f(n) = n2. Then

∆f(n) = (n+ 1)2 − n2 = 2n+ 1.

c) Let f(n) = n3. Then

∆f(n) = (n+ 1)3 − n3 = 3n2 + 3n+ 1.

Wednesday, November 28, 2012



Falling Power

We define the m-th falling power of n as

nm = n(n− 1) · · · (n−m+ 1)

for m ≥ 0. We have

∆nm = mnm−1.
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Falling Power

Theorem. We have

∆nm = mnm−1.

Proof. By definition,

∆nm = (n+ 1)n · · · (n−m+ 2)
−n · · · (n−m+ 2)(n−m+ 1)

= mn · · · (n−m+ 2)
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Negative Falling Powers
Since

nm/nm−1 = (n−m+ 1),

we have

n2/n1 = n(n− 1)/n = (n− 1),

n1/n0 = n/1 = n

so we expect that

n0/n−1 = n+ 1

holds, which implies that

n−1 = 1/(n+ 1).
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Negative 

Similarly, we want

n−1/n−2 = n+ 2

so

n−2 =
1

(n+ 1)(n+ 2)

We define

n−m =
1

(n+ 1)(n+ 2) · · · (n+m)
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Exercise

Show that for m ≥ 0, we have

∆n−m = −mn−m−1
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Exponentials

Let c �= 1 be a fixed real number. Then

∆cn = cn+1 − cn = (c− 1)cn.

In particular,
∆2n = 2n.
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Antidifference

A function f(n) with the property that

∆f(n) = g(n)

is called the antidifference of the function g(n).

Example. The antidifference of the function g(n) =
nm is given by

f(n) =
1

m+ 1
nm+1.
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Antidifference

Example. The antidifference of the function g(n) =
cn is given by

f(n) =
1

c− 1
cn.

Indeed,

∆f(n) =
1

c− 1
(cn+1 − cn) = cn.
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Fundamental Theorem of FDC
Theorem. Let f(n) be an antiderivative of g(n).
Then

b�

n=a

g(n) = f(b+ 1)− f(a).

Proof. We have

b�

n=a

g(n) =
b�

n=a

∆f(n)

=
b�

n=a

(f(n+ 1)− f(n))

=
b+1�

n=a+1

f(n)−
b�

n=a

f(n) = f(b+ 1)− f(a).
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Example 1

Suppose we want to find a closed form for the sum

64�

n=5

cn.

An antiderivative of cn is 1
c−1c

n. Therefore, by the
fundamental theorem of finite difference, we have

64�

n=5

cn =
1

c− 1
cn

�����

65

5

=
c65 − c5

c− 1
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Antidifference

We are going to denote an antidifference of a function
f(n) by �

f(n) δn.

The δn plays the same role as the dx term in inte-
gration.

For example,

�
nm δn =

1

m+ 1
nm+1

when m �= −1. What about m = −1?
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Harmonic Numbers = Discrete ln

We have

�
n
−1 δn = Hn = 1 +

1

2
+ · · ·+ 1

n
.

Indeed,

∆Hn = Hn+1 −Hn =
1

n+ 1
= n

−1
.

Thus, the antidifference of n−1 is Hn.
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Linearity

Let f(n) and g(n) be two sequences and a and b two
constants. Then

∆(af(n) + bg(n)) = a∆f(n) + b∆g(n).

Consequently, the antidifferences are linear as well:

�
(af(n) + bg(n)) δn = a

�
f(n) δn+ b

�
g(n) δn
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Example
To solve our motivating example, we need to find a
closed form for the sum

n�

k=1

k2.

Since k2 = k2 + k1, an antiderivative of k2 is given
by

�
k2 δk =

�
(k2 + k1)δk =

1

3
k3 +

1

2
k2.

Thus, the sum

n�

k=1

k2 =
1

3
k3

����
n+1

1

+
1

2
k2

����
n+1

1

= . . . =
n(2n+ 1)(n+ 1)

6
.
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Binomial Coefficients
By Pascal’s rule for binomial coefficients, we have

�
n

k

�
+

�
n

k + 1

�
=

�
n+ 1

k + 1

�
.

Therefore,

∆

�
n

k + 1

�
=

�
n

k

�
.

In other words,

��
n

k

�
δn =

�
n

k + 1

�
.

For example, this shows that

m�

n=0

�
n

k

�
=

�
m+ 1

k + 1

�
−

�
0

k + 1

�
=

�
m+ 1

k + 1

�
.
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