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R. Motwani, and J. Ullman, 2007
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Understanding Limits of Computing

• So far, we have studied how efficiently 
various problems can be solved.

• There has been no question as to whether it 
is possible to solve the problem

• If we want to explore the boundary 
between what can and what cannot be 
computed, we need a model of computation
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Models of Computation

• Need a way to clearly and unambiguously 
specify how computation takes place

• Many different mathematical models have 
been proposed:
• Turing Machines
• Random Access Machines
• …

• They have all been found to be equivalent!
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Church-Turing Thesis

• Conjecture:  Anything we reasonably think of 
as an algorithm can be computed by a Turing 
Machine (specific formal model).

• So we might as well think in our favorite 
programming language, or in pseudocode.

• Frees us from the tedium of having to 
provide boring details
• in principle, pseudocode descriptions can be 

converted into some appropriate formal model
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Short Review of some 
Basic Set Theory Concepts
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Some Notation

If A and B are sets, then the set of all 
functions from A to B is denoted by BA. 

If A is a set, then P(A) denotes the 
power set, i.e., P(A) is the set of all 
subsets of A. 
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Cardinality

Two sets A and B are said to have the same 
cardinality if and only if there exists a 
bijective function from A onto B.
[ A function is bijective if it is one-to-one and onto ]  

We write |A|=|B| if A and B have the same 
cardinality.
[Note that |A|=|B| says that A and B have the same number 
of elements, even if we do not yet know about numbers!] 

8
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How Set Theorists Count

Set theorists count 
•  0 = {}     // the empty set exists by axiom This set 

contains no elements
•  1 = {0} = {{}}  // form the set containing {} This 

set contains one element
•  2 = {0,1} = { {}, {{}} }      This 

set contains two elements
• Keep including all previously created sets as elements 

of the next set. 
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Example

Theorem: |P(X)| = |2X|
Proof: The bijection from P(X) onto 2X  is given 
by the characteristic function. q.e.d.
Example: X = {a,b}

∅  corresponds to  f(a)=0, f(b)=0

{a}  corresponds to  f(a)=1, f(b)=0

{b}  corresponds to  f(a)=0, f(b)=1

{a,b}  corresponds to  f(a)=1, f(b)=1
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More About Cardinality

Let A and B be sets. 

We write |A|<=|B| if and only if there 
exists an injective function from A to B.

We write |A|< |B| if and only if there 
exist an injective function from A to B, 
but no bijection exists from A to B. 
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Cardinality

Cantor’s Theorem: Let  S be any set. Then |S|<|P(S)|. 

Proof: Since the function i from S to P(S) given by i(s)=
{s} is injective, we have |S| <= |P(S)|.
Claim: There does not exist any function f from S to P(S) 
that is surjective. 
Indeed, T = { s ∈ S: s ∉ f(s) } is not contained in f(S). 
An element s in S is either contained in T or not.    
• If s ∈ T, then s ∉ f(s) by definition of T.  Thus, T≠f(s).
• If s ∉ T, then s ∈ f(s) by definition of T. Thus, T≠f(s).
Therefore, f is not surjective.  This proves the claim. 
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Uncountable Sets and 
Uncomputable Functions
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Countable Sets

Let N be the set of natural numbers.

A set X is called countable if and only if there 
exists a surjective function from N onto X. 

Thus, finite sets are countable, N is countable, 
but the set of real numbers is not countable.
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An Uncountable Set

Theorem: The set NN = { f | f:N->N } is 
not countable. 

Proof: We have |N|<|P(N)| by Cantor’s 
theorem. Since |P(N)|=|2N| and 2N is a 
subset of NN we can conclude that 
 |N| < |P(N)| = | 2N | <= | NN |.  q.e.d. 
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Alternate Proof: 
The Set NN is Uncountable

Seeking a contradiction, we assume that the 
set of functions from N to N is countable. 
Let the functions in the set be f0, f1, f2, …

We will obtain our contradiction by defining 
a function fd (using "diagonalization") that 
should be in the set but is not equal to any 
of the fi's. 

Monday, November 19, 2012



17

Diagonalization

0 1 2 3 4 5 6
f0 4 14 34 6 0 1 2
f1 55 32 777 3 21 12 8
f2 90 2 5 21 66 901 2
f3 4 44 4 7 8 34 28
f4 80 56 32 12 3 6 7
f5 43 345 12 7 3 1 0
f6 0 3 6 9 12 15 18
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Diagonalization
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Diagonalization

• Define the function:  fd(n) = fn(n) + 1
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Diagonalization

• Define the function:  fd(n) = fn(n) + 1

• In the example:
• fd(0) = 4 + 1 = 5, so fd ≠ f0
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Diagonalization

• Define the function:  fd(n) = fn(n) + 1

• In the example:
• fd(0) = 4 + 1 = 5, so fd ≠ f0

• fd(1) = 32 + 1 = 33, so fd ≠ f1
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Diagonalization

• Define the function:  fd(n) = fn(n) + 1

• In the example:
• fd(0) = 4 + 1 = 5, so fd ≠ f0

• fd(1) = 32 + 1 = 33, so fd ≠ f1

• fd(2) = 5 + 1 = 6, so fd ≠ f2
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Diagonalization

• Define the function:  fd(n) = fn(n) + 1

• In the example:
• fd(0) = 4 + 1 = 5, so fd ≠ f0

• fd(1) = 32 + 1 = 33, so fd ≠ f1

• fd(2) = 5 + 1 = 6, so fd ≠ f2

• fd(3) = 7 + 1 = 8, so fd ≠ f3

• fd(4) = 3 + 1 = 4, so fd ≠ f4

• etc.
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Uncomputable Functions Exist!

Consider all programs (in our favorite model) 
that compute functions in NN.
The set NN is uncountable, hence cannot  be 
enumerated.
However, the set of all programs can be 
enumerated (i.e., is countable). 
Thus there must exist some functions in NN 
that cannot be computed by a program.
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Set of All Programs is Countable

• Fix your computational model (e.g., 
programming language).

• Every program is finite in length.
• For every integer n, there is a finite 

number of programs of length n.
• Enumerate programs of length 1, then 

programs of length 2, then programs of 
length 3, etc.
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Uncomputable Functions

• Previous proof just showed there must 
exist uncomputable functions

• Did not exhibit any particular uncomputable 
function

• Maybe the functions that are uncomputable 
are uninteresting…

• But actually there are some VERY 
interesting functions (problems) that are 
uncomputable

Monday, November 19, 2012



22

The Halting Problem
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The Function Halt
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The Function Halt

• Consider this function, called Halt:
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The Function Halt

• Consider this function, called Halt:
• input: code for a program P and an input X for P
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The Function Halt

• Consider this function, called Halt:
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• output:  1 if P terminates (halts) when executed on 

input X, and 0 if P doesn't terminate (goes into an 
infinite loop) when executed on input X

Monday, November 19, 2012



23

The Function Halt

• Consider this function, called Halt:
• input: code for a program P and an input X for P
• output:  1 if P terminates (halts) when executed on 

input X, and 0 if P doesn't terminate (goes into an 
infinite loop) when executed on input X

• By the way, a compiler is a program that takes as input 
the code for another program

Monday, November 19, 2012



23

The Function Halt

• Consider this function, called Halt:
• input: code for a program P and an input X for P
• output:  1 if P terminates (halts) when executed on 

input X, and 0 if P doesn't terminate (goes into an 
infinite loop) when executed on input X

• By the way, a compiler is a program that takes as input 
the code for another program

• Note that the input X to P could be (the code for) P itself

Monday, November 19, 2012



23

The Function Halt

• Consider this function, called Halt:
• input: code for a program P and an input X for P
• output:  1 if P terminates (halts) when executed on 

input X, and 0 if P doesn't terminate (goes into an 
infinite loop) when executed on input X

• By the way, a compiler is a program that takes as input 
the code for another program

• Note that the input X to P could be (the code for) P itself
• in the compiler example, a compiler can be run on its 

own code
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The Function Halt

• We can view Halt as a function from N to 
N: 
•  P and X can be represented in ASCII, 

which is a string of bits.  
• This string of bits can also be 

interpreted as a natural number.
• The function Halt would be a useful 

diagnostic tool in debugging programs
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Halt is Uncomputable

• Suppose in contradiction there is a 
program Phalt that computes Halt.

• Use Phalt as a subroutine in another 
program, Pself.

• Description of Pself:
• input:  code for any program P
• constructs pair (P,P) and calls Phalt on (P,P)

• returns same answer as Phalt
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Pself

Phalt

0 if P halts 
on input P

1 if P doesn't halt 
on input P

P (P,P)

Pself
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Halt is Uncomputable

• Now use Pself as a subroutine inside another program 
Pdiag.

• Description of Pdiag:

• input:  code for any program P
• call Pself on input P

• if Pself returns 1 then go into an infinite loop

• if Pself returns 0 then output 0

• Pdiag on input P does the opposite of what program P 
does on input P
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Pdiag

1 if P halts 
on input P

0 if P doesn't 
halt on input P

P Phalt
(P,P)

Pself

0 

Pdiag

P
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Halt is Uncomputable
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Halt is Uncomputable
• Review behavior of Pdiag on input P:
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Halt is Uncomputable
• Review behavior of Pdiag on input P:

• If P halts when executed on input P, then Pdiag goes into an 
infinite loop

• If P does not halt when executed on input P, then Pdiag halts 
(and outputs 0)

• What happens if Pdiag is given its own code as input?  
It either halts or doesn't.
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Halt is Uncomputable
• Review behavior of Pdiag on input P:

• If P halts when executed on input P, then Pdiag goes into an 
infinite loop

• If P does not halt when executed on input P, then Pdiag halts 
(and outputs 0)

• What happens if Pdiag is given its own code as input?  
It either halts or doesn't.
• If Pdiag halts when executed on input Pdiag, then Pdiag goes into 

an infinite loop
• If Pdiag doesn't halt when executed on input Pdiag, then Pdiag 

halts

Contradiction
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Halt is Uncomputable

• What went wrong?
• Our assumption that there is an 

algorithm to compute Halt was 
incorrect.

• So there is no algorithm that can 
correctly determine if an arbitrary 
program halts on an arbitrary input.
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Undecidability
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Undecidability

• The analog of an uncomputable function is 
an undecidable set.

• The theory of what can and cannot be 
computed focuses on identifying sets of 
strings:
• an algorithm is required to "decide" if a given 

input string is in the set of interest
• similar to deciding if the input to some NP-

complete problem is a YES or NO instance 
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Undecidability

• Recall that a (formal) language is a set of 
strings, assuming some encoding.

• Analogous to the function Halt is the set H 
of all strings that encode a program P and an 
input X such that P halts when executed on X.

• There is no algorithm that can correctly 
identify for every string whether it belongs 
to H or not.
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More Reductions

• For NP-completeness, we were concerned 
with (time) complexity of probems:
• reduction from P1 to P2 had to be fast (polynomial 

time)

• Now we are concerned with computability of 
problems:
• reduction from P1 to P2 just needs to be 

computable, don't care how slow it is
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Many-One Reduction

all strings over L1's 
alphabet

L1

all strings over L2's 
alphabet

L2

f
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Many-One Reduction

• YES instances map to YES instances
• NO instances map to NO instances
• computable (doesn't matter how slow)
• Notation:  L1 ≤m L2

• Think:  L2 is at least as hard to compute 
as L1
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Many-One Reduction Theorem

Theorem: If L1 ≤m L2 and L2 is computable, then 
L1 is computable.

Proof: Let f be the many-one reduction from L1 
to L2. Let A2 be an algorithm for L2. Here is 
an algorithm A1 for L1.

• input: x
• compute f(x)
• run A2 on input f(x)
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Implication

• If there is no algorithm for L1, then 
there is no algorithm for L2.

• In other words, if L1 is undecidable, 
then L2 is also undecidable.

• Pay attention to the direction!
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Example of a Reduction

• Consider the language LNE consisting of all strings 
that encode a program that halts (does not go 
into an infinite loop) on at least one input. 

• Use a reduction to show that LNE is not 
decidable:
• Show some known undecidable language ≤m LNE.

• Our only choice for the known undecidable language is 
H (the language corresponding to the halting problem)

• So show H ≤m LNE.
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Example of a Reduction

• Given an arbitrary H input (encoding of a 
program P and an input X for P), compute an LNE 
input (encoding of a program P')
• such that P halts on input X if and only if P' halts on at 

least one input.

• Construction consists of writing code to describe 
P'.

• What should P' do?  It's allowed to use P and X
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Example of a Reduction

• The code for P' does this:
• input X':
• ignore X'
• call program P on input X
• if P halts on input X then return whatever P returns

• How does P' behave?  
• If P halts on X, then P' halts on every input
• If P does not halt on X, then P' does not halt on any 

input

Monday, November 19, 2012



42

Example of a Reduction

• Thus if (P,X) is a YES input for H (meaning P 
halts on input X), then P' is a YES input for LNE 
(meaning P' halts on at least one input).

• Similarly, if (P,X) is  NO input for H (meaning P 
does not halt on input X), then P' is a NO input 
for LNE (meaning P' does not halt on even one 
input)

• Since H is undecidable, and we showed H ≤m LNE, 
LNE is also undecidable.
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Generalizing Such Reductions

• There is a way to generalize the reduction we 
just did, to show that lots of other languages 
that describe properties of programs are also 
undecidable.

• Focus just on programs that accept languages 
(sets of strings):
• I.e., programs that say YES or NO about their inputs
• Ex:  a compiler tells you YES or NO whether its input 

is syntactically correct
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Properties About Programs

• Define a property about programs to be a set of 
strings that encode some programs.

• The "property" corresponds to whatever it is that all 
the programs have in common

• Example:
• Program terminates in 10 steps on input y
• Program never goes into an infinite loop
• Program accepts a finite number of strings
• Program contains 15 variables
• Program accepts 0 or more inputs
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Functional Properties

• A property about programs is called 
functional if it just refers to the language 
accepted by the program and not about the 
specific code of the program
• Program terminates in 10 steps on input y 

(n.f.)
• Program never goes into an infinite loop (f.)
• Program accepts a finite number of strings 

(f.)
• Program contains 15 variables (n.f.)
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Nontrivial Properties

• A functional property about programs is 
nontrivial if some programs have the 
property and some do not

• Example of nontrivial programs:
• Program never goes into an infinite loop
• Program accepts a finite number of strings

• Example of a trivial program:
• Program accepts 0 or more inputs
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Rice's Theorem

• Every nontrivial (functional) property about 
programs is undecidable.

• The proof is a generalization of the reduction 
shown earlier.

• Very powerful and useful theorem:
• To show that some property is undecidable, only 

need to show that is nontrivial and functional, 
then appeal to Rice's Theorem
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Applying Rice's Theorem

• Consider the property "program accepts a finite 
number of strings".

• This property is functional:  
• it is about the language accepted by the program and not 

the details of the code of the program

• This property is nontrivial:  
• Some programs accept a finite number of strings (for 

instance, the program that accepts no input)
• some accept an infinite number (for instance, the program 

that accepts every input)

• By Rice's theorem, the property is undecidable.
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Implications of Undecidable 
Program Property

• It is not possible to design an algorithm (write a 
program) that can analyze any input program and 
decide whether the input program satisfies the 
property!

• Essentially all you can do is simulate the input 
program and see how it behaves
• but this leaves you vulnerable to an infinite loop

• Thought question:  Then how can compilers be 
correct?
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