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Randomized Algorithms

A randomized algorithm is an algorithm that makes random choices 
during its execution.

A randomized algorithm uses values generated by a random number 
generator to decide the next step at several branches of its 
execution.

Therefore, the steps taken by a randomized algorithm might differ 
from execution to execution, even if the input remains the same.



Why Randomization?

Randomization can lead to simple algorithms that are easy to 
implement.

Randomization can lead to efficient implementations.



Running Time

The designer of a randomized algorithm must determine what kind of 
running time one can expect.

The running time is now a random variable, and one needs tools from 
probability theory to estimate it.



Motivation (1)

Suppose that a company has several servers containing its database. 
The database is stored in several locations (e.g. east coast and west 
coast).

At the end of the business day, the company wants to verify that 
the copies of the databases are still consistent. Transmission of the 
data is not feasible. How can we whether the content is the same?  



Motivation (2)

Suppose we have implemented an extremely fast algorithm to 
multiply very large matrices (e.g. of dimension 100,000x100,000). 

How can we verify whether the computation was correct?  



Motivation (3)

In the RSA key exchange, we need to form the product of two very 
large primes (each having 1000 digits or more).

How can we efficiently check whether a number is prime?  

  



Basics from Probability Theory



Sample Spaces

The possible outcomes of an experiment are called the 
sample space Ω.

Examples:

 coin tossing: sample space Ω={head, tail}.

 rolling a die: sample space Ω={1,2,3,4,5,6}.  

 



σ-Algebra
A probability measure is not necessarily defined on all subsets of the 
sample space, but only on those that are considered events. We will 
have a uniform way of reasoning about event by requiring that they 
form a σ-algebra. 

A σ-algebra F is a collection of subsets of a sample space Ω such that 

 the empty set is contained in F,

 if E in F, then its complement Ec = Ω\E is in F,

 a countable union of sets in F is contained in F.



σ-Algebra Example
Let Ω = {1,2,3,4,5,6} the sample space of a die. 

Suppose we are interested in the events: 

• D = {1,2}, the value is less than 3. 

• E = {3,4,5,6}, the value is 3 or more. 

Then the smallest σ-algebra F containing D and E is given by 

F={ ∅, D, E, Ω }.

The empty set ∅ is called the impossible event. 

The set  Ω is called the certain event.    



σ-Algebra

The σ-algebra allows one to talk about 

• the impossible event 

• complementary event

• the union of events

• the certain event

When rolling a dice, the event that the outcome is an even face value is 
{2,4,6}. The event that the outcome is a value larger than 4 is {5,6}. 



Operations on Events
Let D and E be events. Then 

• D ∪ E is an event 

• D ∩ E is an event

• D \ E is an event

Indeed, let E1=D, E2=E,  and E3=E4=...=∅. Then

∪ Ei = D ∪ E. 

The other two properties are also easy to show.



Probability Measure

Let F be a σ-algebra over a sample space Ω. A probability measure 
on F is a function Pr: F -> [0,1] such that 

 the certain event satisfies Pr[Ω]=1,

 if the events E1, E2, ... in F are mutually disjoint, then 

Pr[
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Properties of Probability Measures

Let E be an event. Then 

1 = Pr[Ω] = Pr[E] + Pr[Ec],

as E and  Ec are disjoint.

Therefore, the complementary event Ec has probability 

Pr[Ec] = 1 - Pr[E].

In particular, the impossible event has probability 

Pr[∅]=1-Pr[Ω]=0 



Properties of Probability Measures

Let D and E be events such that D⊆E.

Then Pr[D] <= Pr[E]. 

Why? 



Properties of Probability Measures

Let D and E be events. Then 

Pr[ D∪E ] = Pr[D] + Pr[E] - Pr[D∩E].

Indeed, we have 

(a) Pr[D] = Pr[D - (D∩E)] + Pr[D∩E],  

(b) Pr[E] = Pr[E - (D∩E)] + Pr[D∩E]. 

Since

Pr[D∪E ] = Pr[D - (D∩E)] + Pr[E - (D∩E)] + Pr[D∩E],

the claim follows from (a) and (b). 



Uniform Probability Distribution

Let Ω be a finite sample space. 

Let F = P( Ω ) be the σ-algebra consisting of all subsets of Ω. 

Then the probability measure Pr: F->[0,1] defined by 

Pr[{s}] = 1/| Ω| 

for all s in Ω is called the uniform probability distribution on Ω. 



Continuous Probability Distribution

The continuous uniform probability distribution over an interval [a,b] 
associates to each subinterval [c,d] of [a,b] the probability 

Pr[ [c,d] ] = (d-c)/(b-a). 

Notice that the probability of any event {x} with x in [a,b] is 0, since 
Pr[ {x} ] = Pr[ [x,x] ] = 0. 



Continuous Probability Distribution

For the sample space Ω = [a,b], one cannot choose the σ-algebra  
F=P(Ω), since there does not exist any function on P(Ω) = P([a,b]) 
that satisfies our axioms of a probability measure (unless one 
assumes unusual axioms for set theory).

Instead, define F to be the smallest σ-algebra on Ω =[a,b] that 
contains the intervals [c,d] for all c,d in the range a <= c <= d <= 
b. Then there exists a function Pr: F -> [0,1] such that Pr[ [c,d] ] = 
(d-c)/(b-a). It is called the Borel measure on F. 

Deep 
Water!



Union Bound

Let I ⊆{1,2,3,...}.  Let Ei with i in I be a set of events. 

These events do not need to be disjoint. 

Then the union bound states that

This simple bound is enormously useful, as it is easy to compute.  
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Conditional Probabilities

Let D and E be events such that Pr[E] >0. 

The conditional probability Pr[D|E] is defined as

One can interpret Pr[D|E] as the probability that the event D occurs, 
assuming that the event E occurs. 

Pr[D|E] =
Pr[D ∩ E]

Pr[E]



Useful Multiplication Formula

Quite often, it is easy to determine conditional probabilities: 

Pr[D ∩ E] = Pr[D|E] Pr[E]



Independent Events

Two events D and E are called independent if and only if 

If D and E are independent, then

Pr[D ∩ E] = Pr[D] Pr[E]

Pr[D|E] = Pr[D]



Bayes Formula

Sometimes, we know Pr[D|E], but would like to know Pr[E|D]. 

Notice that 

    Pr[D|E] Pr[E] = Pr[D ∩ E] = Pr[E|D]Pr[D]

Therefore, 

    Pr[E|D] = Pr[D|E] Pr[E]/Pr[D]. 


