Deterministic and Randomized Quicksort

Andreas Klappenecker

Overview

- Deterministic Quicksort
- Modify Quicksort to obtain better asymptotic bound
- Linear-time median algorithm
- Randomized Quicksort

Deterministic Quicksort

Quicksort(A,p,r)
if $p<r$ then
$\mathrm{q}:=\operatorname{Partition(A,p,r);~//~rearrange~} A[p . r]$ in place
Quicksort(A, p,q-1);
Quicksort(A,p+1,r);

Divide-and-Conquer

The design of Quicksort is based on the divide-and-conquer paradigm.
a) Divide: Partition the array A[p.r] into two (possibly empty) subarrays A [p..q-1] and $A[q+1, r]$ such that

- $A[x]<=A[q]$ for all x in $[p . . q-1]$
- $A[x]>A[q]$ for all x in $[q+1, r]$
b) Conquer: Recursively sort $A[p . . q-1]$ and $A[q+1, r]$
c) Combine: nothing to do here

Partition

Select pivot (orange element) and rearrange:

- larger elements to the left of the pivot (red)
- elements not exceeding the pivot to the right (yellow)

Partition

```
Partition(A,p,r)
    x := A[r]; // select rightmost element as pivot
    i := p-1;
    for j= p to r-1 {
        if A[j]<= x then i:= i+1; swap(A[i], A[j]);
    }
    swap(A[i+1],A[r]);
    return i+1;
return i+1;
```


Partition - Loop - Example

	2	8	7	1	3	5	6	4
i	p, j							r

2	1	7	8	3	5	6	4
P	i			j			r

2	8	7	1	3	5	6	4
p, i	j						r

2	1	3	8	7	5	6	4
p	i				j		r

2	8	7	1	3	5	6	4
p, i		j					r

| 2 | 1 | 3 | 8 | 7 | 5 | 6 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| p | | i | | | | j | r |

2	8	7	1	3	5	6	4
p, i			j				r

2	1	3	8	7	5	6	4
p		i					r

After the loop, the partition routine swaps the leftmost element of the right partition with the pivot element:

$\operatorname{swap}(A[i+1], A[r])$

now recursively sort yellow and red parts.

Worst-Case Partitioning

The worst-case behavior for quicksort occurs on an input of length n when partitioning produces just one subproblem with $\mathrm{n}-1$ elements and one subproblem with 0 elements.

Therefore the recurrence for the running time $T(n)$ is:

$$
T(n)=T(n-1)+T(0)+\theta(n)=T(n-1)+\theta(n)=\theta\left(n^{2}\right)
$$

Perhaps we should call this algorithm pokysort?

"Better" Quicksort and Linear Median Algorithm

Best-case Partitioning

Best-case partitioning:
If partition produces two subproblems that are roughly of the same size, then the recurrence of the running time is

$$
T(n)<=2 T(n / 2)+\theta(n)
$$

so that $T(n)=O(n \log n)$
Can we achieve this bound?
Yes, modify the algorithm. Use a linear-time median algorithm to find median, then partition using median as pivot.

Linear Median Algorithm

Let $A[1 . . n]$ be an array over a totally ordered domain.

- Partition A into groups of 5 and find the median of each group. [You can do that with 6 comparisons]
- Make an array $U[1 . n / 5]$ of the medians and find the median m of U by recursively calling the algorithm.
- Partition the array A using the median-of-medians m to find the rank of m in A. If m is of larger rank than the median of A, eliminate all elements $>m$. If m is of smaller rank than the median of A, then eliminate all elements $<=m$. Repeat the search on the smaller array.

Linear-Time Median Finding

How many elements do we eliminate in each round?
The array U contains $n / 5$ elements. Thus, $n / 10$ elements of U are larger (smaller) than m, since m is the median of U. Since each element in U is a median itself, there are $3 \mathrm{n} / 10$ elements in A that are larger (smaller) than m .

Therefore, we eliminate $(3 / 10)$ n elements in each round.
Thus, the time $T(n)$ to find the median is
$T(n)<=T(n / 5)+T(7 n / 10)+6 n / 5$.
// median of U, recursive call, and finding medians of groups

Solving the Recurrence

Suppose that $T(n)<=c n$ (for some c to be determined later)
$T(n)<=c(n / 5)+c(7 n / 10)+6 n / 5=c(9 n / 10)+6 n / 5$
If this is to be $<=\mathrm{cn}$, then we need to have
$c(9 n / 10)+12 n / 10<=\mathrm{cn}$ or $12<=c$
Suppose that $T(1)=d$. Then choose $c=\max \{12, d\}$.
An easy proof by induction yields $\mathrm{T}(\mathrm{n})<=\mathrm{cn}$.

Goal Achieved?

We can accomplish that quicksort achieves $O(n \log n$) running time, if we use the linear-time median finding algorithm to select the pivot element.

Unfortunately, the constant in the big Oh expression becomes large, and quicksort looses some of its appeal.

Is there a simpler solution?

Randomized Quicksort

Deterministic Quicksort

Randomized-Quicksort(A,p,r)
if $p<r$ then
$\mathrm{q}:=$ Randomized-Partition(A,p,r);
Randomized-Quicksort(A, p,q-1);
Randomized-Quicksort(A,p+1,r);

Partition

Randomized-Partition(A, P, r)
$i:=$ Random(p,r);
swap(A[i],A[r]);
Partition(A, p,r);
Almost the same as Partition, but now the pivot element is not the rightmost element, but rather an element from $A[p . r]$ that is chosen uniformly at random.

Goal

- The running time of quicksort depends mostly on the number of comparisons performed in all calls to the Randomized-Partition routine.
- Let X denote the random variable counting the number of comparisons in all calls to Randomized-Partition.

Notations

- Let z_{i} denote the $i-t h$ smallest element of $A[1 . . n]$.
- Thus $A[1 . . n]$ sorted is $\left\langle Z_{1}, z_{2}, \ldots, Z_{n}\right\rangle$.
- Let $z_{i j}=\left\{z_{i}, \ldots, z_{j}\right\}$ denote the set of elements between z_{i} and z_{j}, including these elements.
- $X_{i j}=I\left\{z_{i}\right.$ is compared to $\left.z_{j}\right\}$.
- Thus, $X_{i j}$ is an indicator random variable for the event that the

Number of Comparisons

Since each pair of elements is compared at most once by quicksort, the number X of comparisons is given by

$$
X=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}
$$

Therefore, the expected number of comparisons is

$$
\mathrm{E}[X]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathrm{E}\left[X_{i j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{Pr}\left[z_{i} \text { is compared to } z_{j}\right]
$$

When do we compare?

When do we compare z_{i} to z_{j} ?
Suppose we pick a pivot element in $Z_{i j}=\left\{z_{i}, \ldots, z_{j}\right\}$.
If $z_{i}<x<z_{j}$ then z_{i} and z_{j} will land in different partitions and will never be compared afterwards.

Therefore, z_{i} and z_{j} will be compared if and only if the first element of $Z_{i j}$ to be picked as pivot element is contained in the set $\left\{z_{i}, z_{j}\right\}$.

Probability of Comparison

$\operatorname{Pr}\left[z_{i}\right.$ or z_{j} is the first pivot chosen from $\left.Z_{i j}\right]$
$=\operatorname{Pr}\left[z_{i}\right.$ is the first pivot chosen from $\left.Z_{i j}\right]$
$+\operatorname{Pr}\left[z_{j}\right.$ is the first pivot chosen from $\left.Z_{i j}\right]$
$=\frac{1}{j-i+1}+\frac{1}{j-i+1}=\frac{2}{j-i+1}$

Expected Number of Comparisons

$$
\begin{aligned}
\mathrm{E}[\mathrm{X}] & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} \\
& <\sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k} \\
& =\sum_{i=1}^{n-1} O(\log n) \\
& =O(n \log n)
\end{aligned}
$$

Conclusion

It follows that the expected running time of RandomizedQuicksort is $O(n \log n)$.

It is unlikely that this algorithm will choose a terribly unbalanced partition each time, so the performance is very good almost all the time.

