The Birthday Problem

Andreas Klappenecker

The Birthday Problem

What is the probability puni that among a group of m people, at least two share the same birthday?

Solution

Let's solve the problem for arbitrary planets. Let's assume that the m people live on a planet that has n days per year. Then

$$
n(n-1) \cdots(n-m+1)
$$

$$
n^{m}
$$

is the probability that no two share a birthday, so

$$
p_{u n i}=1-\frac{n(n-1) \cdots(n-m+1)}{n^{m}}=1-\prod_{i=1}^{m-1}\left(1-\frac{i}{n}\right)
$$

assuming that $m<=n$ and the birthdays are independent and uniformly distributed.

Lower Bound

Since $1-x<=\exp (-x)$ holds for all real numbers x, we have

$$
\begin{aligned}
p_{u n i} & =1-\prod_{i=1}^{m-1}\left(1-\frac{i}{n}\right) \\
& \geq 1-\exp \left(-\sum_{i=1}^{m-1} \frac{i}{n}\right)=1-\exp \left(-\frac{(m-1) m}{2 n}\right)
\end{aligned}
$$

Consequence

Therefore, if we consider $m \geq \frac{1}{2}(1+\sqrt{1-8 n \ln \delta})$ people, where δ is a real number in the range $0<$ $\delta \leq 1$, then the probability $p_{\text {uni }}$ that at least two of them have a common birthday satisfies $p_{\text {uni }} \geq 1-\delta$. For example, when $n=365$, we have

m	23	42	59	72
$p_{\text {uni }}$	0.5	0.9	0.99	0.999

The Flaw

There are fewer births on weekends than during the week.
There are fewer births on July 4 than on other days in July.
There are significant seasonal variations.
=> Birthdays are not uniformly distributed.

Nonuniform Birthday Problem

Let p_{k} denote the probability that a person is born on the k-th day of the year, where $1 \leq k \leq n$. Then the probability $p_{n u}$ that among m people at least two have the same birthday using the distribution ($p_{1}, p_{2}, \ldots, p_{n}$) of birthdays is given by

$$
p_{n u}=1-e_{m}\left(p_{1}, p_{2}, \ldots, p_{n}\right),
$$

where e_{m} denotes the m-th elementary symmetric function,

$$
e_{m}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq j_{1}<j_{2}<\cdots<j_{m} \leq n} x_{j_{1}} x_{j_{2}} \cdots x_{j_{m}} .
$$

Relation

Any probability distribution majorizes the uniform distribution,

$$
(1 / n, 1 / n, \ldots, 1 / n) \prec\left(p_{1}, p_{2}, \ldots, p_{n}\right),
$$

which means that the sum of the k largest probabilities in $\left\{p_{1}, \ldots, p_{n}\right\}$ is at least k / n for all k in the range $1 \leq k \leq n$. Since the elementary symmetric functions are Schur-concave (meaning that they are monotonically decreasing with respect to the relation \prec), it follows that $e_{m}(1 / n, 1 / n, \ldots, 1 / n) \geq$ $e_{m}\left(p_{1}, p_{2}, \ldots, p_{n}\right)$.

Relation

Therefore, we can conclude that

$$
\begin{aligned}
p_{\text {uni }} & =1-\frac{n(n-1) \cdots(n-m+1)}{n^{m}} \\
& =1-e_{m}(1 / n, 1 / n, \ldots, 1 / n) \\
& \leq 1-e_{m}\left(p_{1}, p_{2}, \ldots, p_{n}\right)=p_{n u} .
\end{aligned}
$$

Relation

One can show the following relation between uniform and nonuniform distribution case:

$$
\begin{aligned}
p_{\text {uni }} & =1-\frac{n(n-1) \cdots(n-m+1)}{n^{m}} \\
& =1-e_{m}(1 / n, 1 / n, \ldots, 1 / n) \\
& \leq 1-e_{m}\left(p_{1}, p_{2}, \ldots, p_{n}\right)=p_{n u},
\end{aligned}
$$

as e_{m} is a so-called Schur-concave function.

References

- J. Buchmann, Introduction to Cryptography, Springer, 2004
- J. Michael Steele, The Cauchy Schwarz Master Class, Cambridge University Press, 2004

