
CSCE 411
Design and Analysis of Algorithms

Andreas Klappenecker

Motivation
In 2004, a mysterious billboard showed up

- in the Silicon Valley, CA

- in Cambridge, MA

- in Seattle, WA

- in Austin, TX

and perhaps a few other places.

Remarkably, the puzzle on the billboard was
immediately discussed worldwide in numerous blogs.

Motivation

Recall Euler’s Number e

e = exp(1) =
∞�

k=0

1

k!

≈ 2.7182818284 . . .

Billboard Question
So the billboard question essentially
asked: Given that

The first affirmative answer gives
the name of the website

e = 2.7182818284 . . .

Is 2718281828 prime?

Is 7182818284 prime?

Strategy
1. Compute the digits of e

2. i := 0

3. while true do {

4. Extract 10 digit number p at position i

5. return p if p is prime

6. i := i+1

7. }

What needs to be
solved?

Essentially, two questions need to be solved:

• How can we create the digits of e?

• How can we test whether an integer is prime?

Generating the Digits

Extracting Digits of e

Extracting Digits of e
We can extract the digits of e in base 10 by

Extracting Digits of e
We can extract the digits of e in base 10 by

d[0] = floor(e); (equals 2)

Extracting Digits of e
We can extract the digits of e in base 10 by

d[0] = floor(e); (equals 2)

e1 = 10*(e-d[0]);

Extracting Digits of e
We can extract the digits of e in base 10 by

d[0] = floor(e); (equals 2)

e1 = 10*(e-d[0]);

d[1] = floor(e1); (equals 7)

Extracting Digits of e
We can extract the digits of e in base 10 by

d[0] = floor(e); (equals 2)

e1 = 10*(e-d[0]);

d[1] = floor(e1); (equals 7)

e2 = 10*(e1-d[1]);

Extracting Digits of e
We can extract the digits of e in base 10 by

d[0] = floor(e); (equals 2)

e1 = 10*(e-d[0]);

d[1] = floor(e1); (equals 7)

e2 = 10*(e1-d[1]);

d[2] = floor(e2); (equals 1)

Extracting Digits of e
We can extract the digits of e in base 10 by

d[0] = floor(e); (equals 2)

e1 = 10*(e-d[0]);

d[1] = floor(e1); (equals 7)

e2 = 10*(e1-d[1]);

d[2] = floor(e2); (equals 1)

Unfortunately, e is a transcendental number, so there is
no pattern to the generation of the digits in base 10.

Extracting Digits of e
We can extract the digits of e in base 10 by

d[0] = floor(e); (equals 2)

e1 = 10*(e-d[0]);

d[1] = floor(e1); (equals 7)

e2 = 10*(e1-d[1]);

d[2] = floor(e2); (equals 1)

Unfortunately, e is a transcendental number, so there is
no pattern to the generation of the digits in base 10.

Initial idea: Use rational approximation to e instead

Some Bounds on e=exp(1)
For any t in the range 1 ≤ t ≤ 1 + 1/n, we have

1

1 +
1
n

≤ 1

t
≤ 1.

Hence,

� 1+1/n

1

1

1 +
1
n

dt ≤
� 1+1/n

1

1

t
dt ≤

� 1+1/n

1
1 dt.

Thus,

1

n+ 1
≤ ln

�
1 +

1

n

�
≤ 1

n

Exponentiating

1

n+ 1
≤ ln

�
1 +

1

n

�
≤ 1

n

yields

e1/n+1 ≤
�
1 +

1

n

�
≤ e

1
n .

Therefore, we can conclude that

�
1 +

1

n

�n

≤ e ≤
�
1 +

1

n

�n+1

.

Approximating e

Since
�
1 +

1

n

�n

≤ e ≤
�
1 +

1

n

�n �
1 +

1

n

�
,

the term �
1 +

1

n

�n

approximates e to k digits, when choosing n = 10k+1.

Drawbacks

• The rational approximation converges too slow.

Drawbacks

• The rational approximation converges too slow.

• We need rational arithmetic with long rationals

Drawbacks

• The rational approximation converges too slow.

• We need rational arithmetic with long rationals

• Too much coding unless a library is used.

Drawbacks

• The rational approximation converges too slow.

• We need rational arithmetic with long rationals

• Too much coding unless a library is used.

• Perhaps we can find a better solution by
choosing a better data structure.

Generating the Digits
Version 2

Idea

e is a transcendental number
=> no pattern when generating
its digits in the usual number
representation

Can we find a better data
structure?

Mixed Radix
Representation

The digits ai are nonnegative integers.

The base of this representation is (1/2,1/3,1/4,…).

The representation is called regular if

ai <= i for i >=1.

Number is written as (a0; a1, a2, a3,…)

Computing the Digits of
the Number e

• Second approach:

• In mixed radix representation ! ! !
e = (2;1,1,1,1,…)!where the digit 2 is due to the
fact that both k=0 and k=1 contribute to the
integral part. Remember: 0!=1 and 1!=1.

Mixed Radix
Representations

• In mixed radix representation (a0; a1, a2, a3,…)

 a0 is the integer part and (0; a1, a2, a3,…) the fractional
part.

• 10 times the number is (10a0; 10a1, 10a2, 10a3,…), but
the representation is not regular anymore. The first few
digits might exceed their bound. Remember that the ith
digit is supposed to be i or less.

• Renormalize the representation to make it regular again

• The algorithm given for base 10 now becomes feasible;
this is known as the spigot algorithm.

Example

Spigot Algorithm
• #define N (1000) /* compute N-1 digits of e, by brainwagon@gmail.com */

• main(i, j, q) {

• int A[N]; printf("2.");

• for (j = 0; j < N; j++)

• A[j] = 1; here the ith digit is represented by A[i-1], as the integral part is omitted

• set all digits of nonintegral part to 1.

• for (i = 0; i < N - 2; i++) {

• q = 0;

• for (j = N - 1; j >= 0;) {

• A[j] = 10 * A[j] + q;

• q = A[j] / (j + 2); compute the amount that needs to be carried over to the next digit

• we divide by j+2, as regularity means here that A[j] <= j+1

• A[j] %= (j + 2); keep only the remainder so that the digit is regular

• j--;

• }

• putchar(q + 48);

• }

• }

To prove that this C program actually does output the digits of e, you take

Revisiting the Question

For mathematicians, the previous algorithm
is natural, but it might be a challenge for
computer scientists and computer engineers
to come up with such a solution.

Could we get away with a simpler approach?

After all, the billboard only asks for the
first prime in the 10-digit numbers
occurring in e.

Generating the Digits
Version 3

Probability to be Prime
Let pi(x)=# of primes less than or equal to x.

Pr[number with <= 10 digits is prime]

 = pi(99999 99999)/99999 99999

 = 0.045 (roughly)

Thus, the probability that none of the first k 10-digits
numbers in e are prime is roughly 0.955k

This probability rapidly approaches 0 for k->∞, so we
need to compute just a few digits of e to find the first
10-digit prime number in e.

Google it!

Since we will likely need just few digits of
Euler’s number e, there is no need to
reinvent the wheel.

We can simply

- google e or

- use the GNU bc calculator

to obtain a few hundred digits of e.

State of Affairs

We have provided three solutions to the question of
generating the digits of e

• A straightforward solution using rational
approximation

•An elegant solution using the mixed-radix
representation of e that led to the spigot algorithm

• A crafty solution that provides enough digits of e
to solve the problem at hand.

How do we check
Primality?

The second question concerning the testing of
primality is simpler.

If a number x is not prime, then it has a divisor
d in the range 2<= d <= sqrt(x).

Trial divisions are fast enough here!

Simply check whether any number d in the range
2 <= d < 100 000 divides a 10-digit chunk of e.

A Simple Script
http://discuss.fogcreek.com/joelonsoftware/default.asp?cmd=show&ixPost=160966&ixReplies=23

#!/bin/sh
echo "scale=1000; e(1)" | bc -l | \
perl -0777 -ne '
s/[^0-9]//g;
for $i (0..length($_)-10) {
 $j=substr($_,$i,10);
 $j +=0;
 print "$i\t$j\n" if is_p($j);
}

sub is_p {
 my $n = shift;
 return 0 if $n <= 1;

 return 1 if $n <= 3;

 for (2 .. sqrt($n)) {

 return 0 unless $n % $_;

 }

 return 1;

What was it all about?

The billboard was an ad paid for by Google.
The website

http://www.7427466391.com
contained another challenge and then asked
people to submit their resume.

Google’s obsession with e is well-known,
since they pledged in their IPO filing to
raise e billion dollars, rather than the usual
round-number amount of money.

http://www.7427466391.com/
http://www.7427466391.com/

Summary

Rational approximation to e and primality test
by trial division

Spigot algorithm for e and primality test by
trial division

A simple crafty solution

