Asymptotic Notations
CSCE 411
Design and Analysis of Algorithms

Andreas Klappenecker

Goal of this Lecture

» Recall the basic asymptotic notations such as Big Oh, Big Omega,
Big Theta, and little oh.

- Recall some basic properties of these notations

- Give some motivation why these notions are defined in the way
they are.

+ Give some examples of their usage.

Summary

Let g2 N->C be a real or complex valued function on the natural numbers.
O(g) = { f: N-> C | Ju>0 3n, EN
[f(n)l <= ulg(n)| for all n>= n, }
Q(g) =1 f: N-> € | 3d>0 3n, EN
dlg(n)l <= If(n)| for all n>= n, }
O(g) ={ f: N-> C [Ju,d>0 In, EN

dlg(n)l <= If(n)l <= ulg(n)l for all n>= n, }

o(g) ={ f: N-> C | lim__,. If(n)l/Ig(n)l = O }

Time Complexity

- When estimating the time-complexity of algorithms, we simply want count
the number of operations. We want to be

- independent of the compiler used (esp. about details concerning the
number of instructions generated per high-level instruction),

- independent of optimization settings, and architectural details.

This means that performance should only be compared up to multiplication
by a constant.

- We want to ignore details such as initial filling the pipeline. Therefore, we
need to ignore the irreqular behavior for small n

Big Oh Notation

Let f,g: N -> R be function from the natural numbers to the
set of real numbers.

We write f € O(qg) if and only if there exists some real
number n, and a positive real constant u such that

HOIRERN ()]

for all n>= n,

Big Oh
Let g: N-> C be a function.

Then O(g) is the set of functions

O(g) = { f: N-> C | there exists a constant u and a natural number n,
such that

[f(n)l <= ulg(n)| for all n>=n, }

Notation

We have
O(n?) € O(n3)

but it is usually written as
O(n2) = O(n3)

This does not mean that the sefs are equal!!!! The equality sign
should be read as 'is a subset of".

Notation

We write n2 = O(n3),

[read as: n? is contained in O(n3)]

But we never write

O(n3) = n?

Example O(n?)

Big Oh Notation

The Big Oh notation was introduced by the number theorist Paul
Bachman in 1894. It perfectly matches our requirements on
measuring fime complexity.

Example:
4n3+3n%+6 in O(n3)

The biggest advantage of the notation is that complicated expressions
can be dramatically simplified.

Limit

Let (x.) be a sequence of real numbers.

We say that u is the limit of this sequence of numbers and write

w=lim__ . X

n

if and only if for each € > O there exists a natural number n, such
that [x_ -u I« € for all n >= n,

Limit - Again!
Let (x,) be a sequence of real numbers.

We say that u is the limit of this sequence of numbers and write

w=lim " X

if and only if for each € > O there exists a natural number n, such
that [x_ -u I« € for all n >= n,

How do we prove that g = O(f)?

Lemma 1. Let f and g be functions from the positive integers to the complex
numbers such that g(n) # 0 for all n > ng for some positive integer ng. If
the limit limy,—~ |f(n)/g(n)| exists and is finite then f(n) = O(g(n)).

Proof. If lim,,— |f(n)/g(n)| = C, then for each € > 0 there exists a positive
integer ng(e) such that C' — e < |f(n)/g(n)| < C + € for all n > ng; this
shows that |f(n)| < (C' + €)|g(n)| for all integers n > ng(e). It follows that
f(n) = 0O(g(n)) L]

Big versus Little Oh

O(g) ={ f: N-> € | 3u>0 In, EN

[f(n)l <= ulg(n)l for all n>=n, }

o(g) ={ f: N-> C | lim___ [f(n)l/lg(n)l = O }

3

n-»oo

L g
m

i.
N-> C .'| lir

i

o(g) =

Quiz

Some computer scientists consider little oh notations too sloppy.
For example, 1/n+1/n? is o(1)

but they might prefer 1/n+1/n? = O(1/n).

Why is that?

Limits? There are no Limits!

The limit of a sequence might not exist.
For example, if f(n) = 1+(-1)" then
lim f(n)

Nn->o0

does not exist.

Least Upper Bound (Supremum)

The supremum b of a set of real numbers S is the defined as the
smallest real number b such that b>=s for all s in S.

We write b = sup S.
- sup {1,2,3} = 3,
+ sup {x : x? <2} = sqrt(2),

- sup {(-1)’'n = 1/n:n>=0} = 1.

The Limit Superior

The limit superior of a sequence (x_) of real numbers is defined as

limsup_ . x = lim_ __ (sup{X_:m>=ng)

[Note that the limit superior always exists in the extended
real line (which includes +x), as sup { X, : m>=n}) is a

monotonically decreasing function of n and is bounded below
by any element of the sequence.]

The Limit Superior

The limit superior of a sequence of real numbers is equal fo the greatest
accumulation point of the sequence.

Necessary and Sufficient Condition

Lemma 2. Let f and g be functions from the positive integers to the complex
numbers such that g(n) # 0 for all n > ng for some positive integer ng. We
have limsup,, . |f(n)/g(n)| < oo if and only if f(n) = O(g(n)).

Proof. 1f limsup,, ... |f(n)/g(n)| = C, then for each € > 0 we have
[f(n)|/|g(n)] > C + ¢

for at most finitely many positive integers: so |f(n)| < (€' + €)/g(n)| holds
for all integers n > ngl(e) for some positive integer ngl(e). and this proves
that f(n) = O(g(n)).

Conversely, if f(n) = O(g(n)). then there exists a positive integer ng and
a constant C' such that g(n) # 0 and |f(n)|/|g(n)| < C for all n > ngy. This

implies that limsup,, . |f(n)/g(n)| < C. L]

Big Omega Notation

Let f, g N-> R be functions from the set of natural numbers
to the set of real numbers.

We write if and only if there exists some real
number n, and a posifive real constant C such that

lg(n)l >= CIf(n)l

for all n in N satisfying n>= n,.

Big Omega

Theorem: f&Q(qg) iff lim inf___If(n)/g(n)|>0.

Proof: If lim inf |[f(n)/g(n)l= C>0, then we have for each €>0 at most
finitely many positive integers satisfying |f(n)/g(n)l< C-¢. Thus,
there exists an n, such that

[f(n)l = (C-¢)lg(n)
holds for all n = n,, proving that f€Q(qg).

The converse follows from the definitions.

Big Theta Notation

Let S be a subset of the real numbers (for instance, we can choose S to be the
set of natural numbers).

If f and g are functions from S to the real numbers, then we write if
and only if

there exists some real number n, and positive real constants C and C’ such that
Clf(n)l<= lg(n)l <= C’If(n)l
for all n in S satisfying n>=nj .

Thus,

Harmonic Number

The Harmonic number H,_ is defined as
H = 1+1/2+1/3+...+1/n.

We have
H =Inn+y+ O(l/n)

where vy iIs The Euler-Mascheroni constant

log n!

Recall that 1! =1 and n! = (n-1)! n.

Theorem: log n! = O(n log n)

Proof:

logn!=logl+log2+ ..+ logn
<=logn+logn+ ..+logn=nlogn

Hence, log n! = O(n log n).

log n!

On the other hand,
logn! =logl+log 2+ ..+ logn
>= log ([(n+1)/2]) + ... + log n
>= (| (n+1)/2]) log ([(n+1)/2])
>= n/2 log(n/2)
= Q(n log n)
For the last step, note that
lim inf____ (n/2 log(n/2))/(n log n) = .

