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The Adversary Technique
Deriving lower bounds for all algorithms that solve a 
certain problem can be a difficult task. 

One potential way to obtain such a proof is by pretending 
that there is an “adversary” which observes the 
interaction of the algorithm with its data structures and 
dynamically generates the input such that the algorithm 
makes as little progress as possible. 

Analyzing the adversary then yields the lower bound 
proof. 



Determining the 
Minimum

Every comparison-based algorithm for determining 
the minimum of a set of n elements must use at 
least n/2 comparisons.

Indeed, every element must be compared at least 
once, for otherwise the adversary can choose an 
element that is not compared and set it to the 
minimum. Precisely two elements are compared by 
a comparison. Hence, there must be at least n/2 
comparisons. 



Remarks 

The best comparison-based algorithm know 
to me makes n-1 comparisons. 

There is quite a gap between n/2 and n-1 
comparisons.

Is the algorithm suboptimal or is the lower 
bound too weak? 



Determining the 
Minimum

Every comparison-based algorithm for determining the 
minimum of a set of n elements must use at least n-1 
comparisons.

Let’s think in terms of a tournament, where x > y 
means that x won against y. We can declare an element 
m to be a minimum if and only if every other element 
has won a comparison against some other element. [As 
the adversary could declare any element that has 
never won to be a minimum.] Since each comparison 
yields one winner, there must be n-1 comparisons. 



Lower Bound for Sorting
[Adversary Version]

Any comparison-based sorting algorithm needs 
in the worst case Ω(n log n) comparisons to 
sort n elements. 

The sorting algorithm needs to decide between 
n! different permutations of the input data. The 
adversary maintains a list L of all possible 
input data that are consistent with the 
comparisons that have been made so far. 



Lower Bound for Sorting 2 

Suppose the algorithm makes the comparison  
a[i]<a[j]. The adversary computes: 

List Ly of permutations in L such that a[i]<a[j]
List Ln of permutations in L such that a[i]>=a[j].

The adversary returns “true” and sets L = Ly 
when |Ly| > |Ln|; otherwise “false” and L = Ln. 

So the adversary tries to keep the list L as 
large as possible. 



Lower Bound for Sorting 3

Since an algorithm cannot terminate unless |L|=1, 
one needs at least log(n!) comparisons. 

As exp(x) > x^n/n! holds for all x>=0, we have    
en > nn/n! and hence n! > (n/e)n.

Therefore, we need                                  
log(n!) > log( (n/e)n) = n log n - n log e = Ω(n log n) 
comparisons. 


