
Adversarial
Lower Bounds

Andreas Klappenecker

The Adversary Technique
Deriving lower bounds for all algorithms that solve a
certain problem can be a difficult task.

One potential way to obtain such a proof is by pretending
that there is an “adversary” which observes the
interaction of the algorithm with its data structures and
dynamically generates the input such that the algorithm
makes as little progress as possible.

Analyzing the adversary then yields the lower bound
proof.

Determining the
Minimum

Every comparison-based algorithm for determining
the minimum of a set of n elements must use at
least n/2 comparisons.

Indeed, every element must be compared at least
once, for otherwise the adversary can choose an
element that is not compared and set it to the
minimum. Precisely two elements are compared by
a comparison. Hence, there must be at least n/2
comparisons.

Remarks

The best comparison-based algorithm know
to me makes n-1 comparisons.

There is quite a gap between n/2 and n-1
comparisons.

Is the algorithm suboptimal or is the lower
bound too weak?

Determining the
Minimum

Every comparison-based algorithm for determining the
minimum of a set of n elements must use at least n-1
comparisons.

Let’s think in terms of a tournament, where x > y
means that x won against y. We can declare an element
m to be a minimum if and only if every other element
has won a comparison against some other element. [As
the adversary could declare any element that has
never won to be a minimum.] Since each comparison
yields one winner, there must be n-1 comparisons.

Lower Bound for Sorting
[Adversary Version]

Any comparison-based sorting algorithm needs
in the worst case Ω(n log n) comparisons to
sort n elements.

The sorting algorithm needs to decide between
n! different permutations of the input data. The
adversary maintains a list L of all possible
input data that are consistent with the
comparisons that have been made so far.

Lower Bound for Sorting 2

Suppose the algorithm makes the comparison
a[i]<a[j]. The adversary computes:

List Ly of permutations in L such that a[i]<a[j]
List Ln of permutations in L such that a[i]>=a[j].

The adversary returns “true” and sets L = Ly
when |Ly| > |Ln|; otherwise “false” and L = Ln.

So the adversary tries to keep the list L as
large as possible.

Lower Bound for Sorting 3

Since an algorithm cannot terminate unless |L|=1,
one needs at least log(n!) comparisons.

As exp(x) > x^n/n! holds for all x>=0, we have
en > nn/n! and hence n! > (n/e)n.

Therefore, we need
log(n!) > log((n/e)n) = n log n - n log e = Ω(n log n)
comparisons.

