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The Divide and Conquer Paradigm

The divide and conquer paradigm is important general technique 
for designing algorithms. In general, it follows the steps: 

- divide the problem into subproblems

- recursively solve the subproblems

- combine solutions to subproblems to get solution to original 
problem



Mergesort



Example: Mergesort

• DIVIDE an input sequence of length n into two parts: 

• the initial ⎡n/2⎤elements and 

• the final⎣n/2⎦elements.

• RECURSIVELY sort the two halves, using sequences with  1 key as a 
basis of the recursion. 

• COMBINE the two sorted subsequences by merging them 



Mergesort Example

Example courtesy of wikipedia



Recurrence Relation for 
Mergesort

Let T(n) be the worst case running time of mergesort on a 
sequence of n keys

If n = 1, then T(n) = Θ(1) (constant)

If n > 1, then 

T(n) = T(⎡n/2⎤) + T(⎣n/2⎦) + Θ(n) 



Simplified Recurrence Relation

Let T(n) be the worst case running time of mergesort on a 
sequence of n keys

If n = 1, then T(n) = Θ(1) (constant)

If n > 1 and n even, then T(n) = 2 T(n/2) + Θ(n) 

[Indeed, we recursively sort the two subproblems of size n/2, and 
we need Θ(n) time to do the merge.]



Recurrence Relations



Master Theorem
Consider a recurrence of the form

! T(n) = a T(n/b) + f(n)!

with a>=1, b>1, and f(n) eventually positive.

a) If f(n) = O(nlogb(a)-ε), then T(n)=Θ(nlogb(a)).

b) If f(n) = Θ(nlogb(a) ), then T(n)=Θ(nlogb(a) log(n)). 

c) If f(n) = Ω(nlogb(a)+ε) and f(n) is regular,    then T(n) = Θ(f(n))

[f(n)  regular iff af(n/b) <= cf(n) for some constant c<1 and all but 
finitely many n]



Roughly speaking...

Essentially, the Master theorem compares the function f(n) with the 
function g(n)=nlogb(a).

Roughly, the theorem says: 

a) If f(n) << g(n) then T(n)=Θ(g(n)).

b) If f(n) ≈ g(n) then T(n)=Θ(g(n)log(n))

c) If f(n) >> g(n) then T(n)=Θ(f(n)).

Now go back and memorize the theorem!

   



Nothing is perfect…

The Master theorem does not cover all possible cases. For example, if 

! f(n) = Θ(nlogb(a) log n), 

then we lie between cases 2) and 3), but the theorem does not apply. 

There exist better versions of the Master theorem that cover more 
cases, but these are harder to memorize. 



Idea of the Proof
Let us iteratively substitute the recurrence: 



Idea of the Proof

Thus, we obtained 

! T(n) = nlogb(a) T(1) + Σ ai f(n/bi)

The proof proceeds by distinguishing three cases: 

1) The first term in dominant: f(n) = O(nlogb(a)-ε)

2) Each part of the summation is equally dominant: f(n) = Θ(nlogb(a) )

3) The summation can be bounded by a geometric series: f(n) = Ω
(nlogb(a)+ε) and the regularity of f is key to make the argument work. 



Fast Integer Multiplication



Integer Multiplication
Elementary school algorithm (in binary)

       101001 = 41

     x 101010 = 42

--------------------

        1010010

     1010010

+ 1010010

--------------------

11010111010 = 1722



Integer Multiplication
Elementary school algorithm (in binary)

       101001 = 41

     x 101010 = 42

--------------------

        1010010

     1010010

+ 1010010

--------------------

11010111010 = 1722

Scan second number from right to left. 
Whenever you see a 1, add the first 
number to the result shifted by the  
appropriate number of bits.



Integer Multiplication

The multiplication of two n bits numbers takes Ω(n2) time using 
the elementary school algorithm.

Can we do better? 

Kolmogorov conjectured in one of his seminars that one cannot, 
but was proved wrong by Karatsuba. 



Divide and Conquer

Let’s split the two integers X and Y into two parts: their most 
significant part and their least significant part. 

X = 2n/2A + B (where A and B are n/2 bit integers)

Y = 2n/2C + D (where C and D are n/2 bit integers)

XY = 2nAC + 2n/2BC + 2n/2AD + BD.



How Did We Do? 

Multiplication by 2x can be done in hardware with very low cost 
(just a shift).

We can apply this algorithm recursively: 

We replaced one multiplication of n bits numbers by four 
multiplications of n/2 bits numbers and 3 shifts and 3 additions

T(n) = 4T(n/2) + cn



Solve the Recurrence

T(n) = 4T(n/2) + cn

By the Master theorem, g(n) = nlog2(4) = n2.

Since cn = O(n2-epsilon), we can conclude that  T(n) = Θ(n2). 



How can we do better?

Suppose that we are able to reduce the number of multiplications 
from 4 to 3, allowing for more additions and shifts (but still a 
constant number).

Then T(n) = 3T(n/2) + dn

Master theorem: dn = O(nlog2(3)-epsilon), so we get T(n) = O(nlog2(3)) = 
O(n1.585).



Karatsuba’s Idea

Let’s rewrite

XY = 2nAC + 2n/2BC + 2n/2AD + BD

in the form

XY = (2n - 2n/2)AC + 2n/2(A+B)(C+D) + (1-2n/2)BD.

Done! Wow!



Summary

Split input X into two parts A and B such that     X = 2n/2A + B.

Split input Y into two parts C and D such that 

Y = 2n/2C + D.

Then calculate AC, (A+B)(C+D), BD. 

Copy and shift the results, and add/subtract: 

XY = (2n - 2n/2)AC + 2n/2(A+B)(C+D) + (1-2n/2)BD.


