Problem Set 2

Due dates: Electronic submission of .pdf files of this homework is due on 9/13/2018 before 11:00am on ecampus, a signed paper copy of the pdf file is due on 9/13/2018 at the beginning of class.

Name: (put your name here)

Resources. (All people, books, articles, web pages, etc. that have been consulted when producing your answers to this homework)

On my honor, as an Aggie, I have neither given nor received any unauthorized aid on any portion of the academic work included in this assignment. Furthermore, I have disclosed all resources (people, books, web sites, etc.) that have been used to prepare this homework.

Signature: _

Problem 1 (15 points). You need to solve the following problem: Is a given positive integer n equal to one of the primes in the set $P = \{p_1, p_2, \ldots, p_k\}$. You are only allowed to perform comparisons such as $n < p_j$ or $n = p_j$. Find the decision tree for binary search on a sorted array containing the elements of P in order, where

$$P = \{2, 3, 7, 11, 17, 23, 31, 37\}.$$

For your answer, you should draw this decision tree. You should keep in mind that binary search correctly identifies any positive integer n such that $n \notin P$.

[Hint: Use the cool tikz package to draw the decision tree in LaTeX.]

Problem 2 (15 points). You need to solve the following problem: Is a given positive integer n equal to one of the primes in the set $P = \{p_1, p_2, \ldots, p_k\}$. You are only allowed to perform comparisons such as $n < p_j$ or $n = p_j$. Derive a tight lower bound on the number of comparisons need by any algorithm to solve this problem using a decision tree.

Problem 3 (10 points). Amelia attempted to solve n algorithmic problems. She wrote down one problem per page in her journal and marked the page with e when she was unable to solve the problem and with e when she was able to solve it. So the pages of her journal look like this:

Use an adversary method to show that any method to find a page with an \bigotimes smiley on it might have to look at all n pages.

Problem 4 (20 points). Amelia attempted to solve n algorithmic problems, where n is an odd number. She wrote down one problem per page in her journal and marked the page with e when she was unable to solve the problem and with e when she was able to solve it. Suppose that we want to find the pattern e, where she was unable to solve a problem, but was able to solve the subsequent problem.

Find an algorithm that always looks at fewer than n pages but is able to correctly find the pattern when it exists. [Hint: First look at all even pages.]

Problem 5. (20 points) Give a (2n-1) lower bound on the number of comparisons needed to merge two sorted lists (a_1, a_2, \ldots, a_n) and (b_1, b_2, \ldots, b_n) with $a_1 < a_2 < \cdots < a_n$ and $b_1 < b_2 < \cdots < b_n$. [Hint: Use an adversarial method. Why can't you have in general 2n - 2 or fewer comparisons? If you are stuck, merge (1,3,5,7) and (2,4,6,8) and see how an adversary could modify this input if less than 7 comparisons were made.]

Solution.

Problem 6. (20 points) Solve Exercise 8.1-4 on page 194 of our textbook.

Solution.

Checklist:

- \Box Did you add your name?
- Did you disclose all resources that you have used?
 (This includes all people, books, websites, etc. that you have consulted)
- $\hfill\square$ Did you sign that you followed the Aggie honor code?
- $\hfill\square$ Did you solve all problems?
- $\hfill\square$ Did you write the solution in your own words?
- \Box Did you submit the pdf file of your homework?
- \Box Did you submit a signed hardcopy of the pdf file in class?