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Terminology

The probability space or sample space Ω is the set of all
possible outcomes of an experiment. For example, the sample space
of the coin tossing experiment is Ω “ thead, tailu.

Certain subsets of the sample space are called events, and the
probability of these events is determined by a probability measure.
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Example

If we roll a dice, then one of its six face values is the outcome of
the experiment, so the sample space is Ω “ t1, 2, 3, 4, 5, 6u.

An event is a subset of the sample space Ω. The event t1, 2u
occurs when the dice shows a face value less than three.

The probability measures describes the odds that a certain event
occurs, for instance Prrt1, 2us “ 1{3 means that the event t1, 2u
will occur with probability 1{3.
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Why σ-Algebras?

A probability measure is not necessarily defined on all subsets of the
sample space Ω, but just on all subsets of Ω that are considered
events. Nevertheless, we want to have a uniform way to reason
about the probability of events. This is accomplished by requiring
that the collection of events form a σ-algebra.
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σ-Algebra

A σ-algebra F is a collection of subsets of the sample space Ω
such that the following requirements are satisfied:

S1 The empty set is contained in F .

S2 If a set E is contained in F , then its complement E c is
contained in F .

S3 The countable union of sets in F is contained in F .
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Terminology

The empty set H is often called the impossible event.

The sample space Ω is the complement of the empty set, hence is
contained in F . The event Ω is called the certain event.

If E is an event, then E c “ Ω zE “ Ω´ E is called the
complementary event.
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Properties

Let F be a σ-algebra.

Exercise
If A and B are events in F , then AX B in F .

Exercise
The countable intersection of events in F is contained in F .

Exercise

If A and B are events in F , then A´ B “ A zB is contained in F .
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Example

Remark

Let A be a subset of PpΩq. Then the intersection of all σ-algebras
containing A is a σ-algebra, called the smallest σ-algebra generated
by A. We denote the smallest σ-algebra generated by A by σpAq.

Example

Let Ω “ t1, 2, 3, 4, 5, 6u and A “ tt1, 2u, t2, 3uu.

σpAq “ tH, t1, 2, 3, 4, 5, 6u,
t1, 2u, t3, 4, 5, 6u,

t2, 3u, t1, 4, 5, 6u,

t2u, t1, 3, 4, 5, 6u, t1u, t2, 3, 4, 5, 6u, t3u, t1, 2, 4, 5, 6u,

t1, 2, 3u, t4, 5, 6u, t1, 3u, t2, 4, 5, 6uu
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Exercise

Let Ω “ t1, 2, 3, 4, 5, 6u and A “ tt2u, t1, 2, 3u, t4, 5uu.
Determine σpAq.

Solution
We have

A “ tH,Ω, t2u, t1, 3, 4, 5, 6u,
t1, 2, 3u, t4, 5, 6u, t4, 5u, t1, 2, 3, 6u,

t1, 3u, t2, 4, 5, 6u, t6u, t1, 2, 3, 4, 5u,

t2, 6u, t1, 3, 4, 5u, t2, 4, 5u, t1, 3, 6uu
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Probability Measure

Let F be a σ-algebra over the sample space Ω. A probability
measure on F is a function Pr : F Ñ r0, 1s satisfying

P1 The certain event satisfies PrrΩs “ 1.

P2 If the events E1,E2, . . . in F are mutually disjoint, then

Prr
8
ď

k“1

Eks “

8
ÿ

k“1

PrrEks.
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Example
Example

Probability Function Let Ω be a sample space and let a P Ω. Suppose that
F “ PpΩq is the σ-algebra. Then Pr : Ω Ñ r0, 1s given by

PrrAs “

#

1 if a P A,

0 otherwise.

is a probability measure.

We know that P1 holds, since PrrΩs “ 1. P2 holds as well. Indeed, if E1,E2, . . .
are mutually disjoint events in PpΩq, then at most one of the events contains a.

8
ÿ

k“1

PrrEks “

#

1 if some set Ek contains a,

0 if none of the sets Ek contains a.

+

“ Prr
8
ď

k“1

Eks
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Immediate Consequences

These axioms have a number of familiar consequences. For
example, it follows that the complementary event E c has probability

PrrE c
s “ 1´ PrrE s.

In particular, the impossible event has probability zero, PrrHs “ 0.
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Immediate Consequences

Another consequence is a simple form of the inclusion-exclusion
principle:

PrrE Y F s “ PrrE s ` PrrF s ´ PrrE X F s,

which is convenient when calculating probabilities.

Indeed,

PrrE Y F s “ PrrEzpE X F qs ` PrrE X F s ` PrrF zpE X F qs

“ PrrE s ` PrrF zpE X F qs ` pPrrE X F s ´ PrrE X F sq

“ PrrE s ` PrrF s ´ PrrE X F s.
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Exercises

Exercise
Let E and F be events such that E Ď F . Show that

PrrE s ď PrrF s.

Exercise
Let E1, . . . ,En be events that are not necessarily disjoint. Show that

PrrE1 Y ¨ ¨ ¨ Y Ens ď PrrE1s ` ¨ ¨ ¨ ` PrrEns.
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Conditional Probabilities
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Conditional Probabilities

Let E and F be events over a sample space Ω such that PrrF s ą 0.
The conditional probability PrrE |F s of the event E given F is
defined by

PrrE |F s “
PrrE X F s

PrrF s
.

The value PrrE |F s is interpreted as the probability that the event
E occurs, assuming that the event F occurs.

By definition, PrrE X F s “ PrrE |F sPrrF s, and this simple
multiplication formula often turns out to be useful.
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Law of Total Probability (Simplest Version)

Law of Total Probability

Let Ω be a sample space and A and E events. We have

PrrAs “ PrrAX E s ` PrrAX E c
s

“ PrrA | E sPrrE s ` PrrA | E c
sPrrE c

s.

The events E and E c are disjoint and satisfy Ω “ E Y E c .
Therefore, we have

PrrAs “ PrrAX E s ` PrrAX E c
s.

The second equality follows directly from the definition of
conditional probability.
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Bayes’ Theorem (Simplest Version)

Bayes’ Theorem

PrrA | Bs “
PrrB | AsPrrAs

PrrBs
.

We have

PrrA | BsPrrBs “ PrrAX Bs “ PrrB X As “ PrrB | AsPrrAs.

Dividing by PrrBs yields the claim.
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Bayes’ Theorem (Second Version)

Bayes’ Theorem (Version 2)

PrrA | Bs “
PrrB | AsPrrAs

PrrB |AsPrrAs ` PrrB |AcsPrrAcs
.

By the first version of Bayes’ theorem, we have

PrrA | Bs “
PrrB | AsPrrAs

PrrBs
.

Now apply the law of total probability with Ω “ AY Ac to the
probability PrrBs denominator.
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Polynomial Identities
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Polynomial Identities

Suppose that we use a library that is supposedly implementing a
polynomial factorization. We would like to check whether the
polynomials such as

ppxq “ px ` 1qpx ´ 2qpx ` 3qpx ´ 4qpx ` 5qpx ´ 6q

qpxq “ x6 ´ 7x3 ` 25

are the same.

We can multiply the terms both polynomials and simplify. This uses
Ωpd2q multiplications for polynomials of degree d .
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Polynomial Identities

If the polynomials ppxq and qpxq are the same, then we must have

ppxq ´ qpxq ” 0.

If the polynomials ppxq and qpxq are not the same, then an integer
r P Z such that

pprq ´ qprq ‰ 0

would be a witness to the difference of ppxq and qpxq.

We can check whether r P Z is a witness in Opdq multiplications.

22 / 39



Polynomial Identities

We get the following randomized algorithm for checking whether
ppxq and qpxq are the same.

Input: Two polynomials ppxq and qpxq of degree d .
for i “ 1 to t do
r “ random(1..100d);
return ’different’ if pprq ´ qprq ‰ 0

end return ’same’
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Polynomial Identities

If ppxq ” qpxq, then every r P Z is a non-witness.

If ppxq ı qpxq, then an integer r in the range 1 ď r ď 100d is a
witness if and only if it is not a root of ppxq ´ qpxq. The
polynomial ppxq ´ qpxq has at most d roots.

The probability that the algorithm will return ’same’ when the
polynomials are different is at most

Prr1same 1|ppxq ı qpxqs ď

ˆ

d

100d

˙t

“
1

100t
.
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Independent Events
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Independent Events

Definition
Two events E and F are called independent if and only if

PrrE X F s “ PrrE sPrrF s.

Two events that are not independent are called dependent.
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Example

Suppose that we flip a fair coin twice. Then the sample space is
tHH ,HT ,TH ,TT u. The probability of each elementary event is
given by 1/4. For instance, PrrtHHus “ 1{4.

The event E that the first coin is heads is given by tHH ,HT u.
We have PrrE s “ 1{2. The event F that the second coin is tails
is given by tHT ,TT u. We have PrrF s “ 1{2.

Then E X F models the event that the first coin is heads and
the second coin is tails. The events E and F are independent,
since

PrrE X F s “
1

4
“ PrrE sPrrF s.
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Independent Events

If E and F are independent, then

PrrE | F s “
PrrE X F s

PrrF s
“

PrrE sPrrF s

PrrF s
“ PrrE s.

In this case, whether or not F happened has no bearing on the
probability of E .
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Mutually Independent Events

Suppose that E1,E2, . . . ,En are events. The events are called
mutually independent if and only if for all subsets S of
t1, 2, . . . , nu, we have

Pr

«

č

iPS

Ei

ff

“
ź

iPS

PrrEi s.

Please note that it is not sufficient to show this condition for
S “ t1, 2, . . . , nu, but we really need to show this for all subsets.
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Example

We toss a fair coin three times. Consider the events:

E1 “ the first two values are the same,

E2 “ the first and last value are the same,

E3 “ the last two values are the same.

The probabilities are PrrE1s “ PrrE2s “ PrrE3s “ 1{2. We have

PrrE1 X E2s “ PrrE2 X E3s “ PrrE1 X E3s “ PrrtHHH ,TTT us “
1

4
.

Thus, all three pairs of events are independent. But

PrrE1 X E2 X E3s “
1

4
‰ PrrE1sPrrE2sPrrE3s “

1

8
,

so they are not mutually independent.
30 / 39



Example

A school offers as electives A “ athletics, B “ band, and
C “ Mandarin Chinese.

PrrAX B X C s “ 0.04 PrrAX B X C s “ 0.2

PrrAX B X C s “ 0.06 PrrAX B X C s “ 0.1

PrrAX B X C s “ 0.1 PrrAX B X C s “ 0.16

PrrAX B X C s “ 0 PrrAX B X C s “ 0.34

Then PrrAX B X C s “ 0.04 “ PrrAsPrrBsPrrC s “ 0.2 ¨ 0.4 ¨ 0.5.
But no two of the three events are pair-wise independent:

PrrAX Bs “ 0.1 ‰ PrrAsPrrBs “ 0.2 ¨ 0.4 “ 0.08
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Verifying Matrix Multiplication
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Verifying Matrix Multiplication

The Problem

Let A, B , and C be n ˆ n matrices over F2 “ Z{2Z.

Is AB “ C?

If we use traditional matrix multiplication, then forming the product
of A and B requires Θpn3q scalar operations. Using the fastest
known matrix multiplications takes about Θpn2.37q scalar
operations. Can we do better using a randomized algorithm?
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Witness

A witness for AB ‰ C would be a vector v such that

ABv ‰ Cv .

We can check whether a vector is a witness in Opn2q time.
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Verifying Matrix Multiplication

Theorem
If AB ‰ C , and we choose a vector v uniformly at random from
t0, 1un, then v is a witness for AB ‰ C with probability ě 1{2. In
other words,

Pr
vPFn

2

rABv “ Cv | AB ‰ C s ď
1

2
.
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Simple Observation

Lemma

Choosing v “ pv1, v2, . . . , vnq P Fn
2 uniformly at random is

equivalent to choosing each vk independently and uniformly at
random from F2.

Proof.
If we choose each component vk independently and uniformly at
random from F2, then each vector v in Fn

2 is created with
probability 1{2n.

Conversely, if v P Fn
2 is chosen uniformly at random, then the

components are independent and vk “ 1 with probability 1{2.
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Proof of the Theorem

Let D “ AB ´ C ‰ 0. Then ABv “ Cv if and only if Dv “ 0.

Since D ‰ 0, the matrix D must have a nonzero entry. Without
loss of generality, suppose that d11 ‰ 0.

If Dv “ 0, then we must have
n
ÿ

k“1

d1kvk “ 0.

Since d11 ‰ 0, this is equivalent to

v1 “ ´

řn
k“2 d1kvk
d11

.
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Proof of the Theorem

Idea (Principle of Deferred Decisions)

Rather than arguing with the vector v P Fn
2, we can choose each

component of v uniformly at random from F2 in order form vn
down to v1.

38 / 39



Proof of the Theorem

Suppose that the components vn, vn´1, . . . , v2 have been chosen.
This determines the right-hand side of

v1 “ ´

řn
k“2 d1kvk
d11

.

Now there is just one choice of v1 that will make the equality true,
so the probability that this equation is satisfied is at most 1/2. In
other words, the probability

PrrABv “ Cv | AB ‰ C s ď 1{2.
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