Basics of Probability Theory

Andreas Klappenecker

Texas A\&M University
(C) 2018 by Andreas Klappenecker. All rights reserved.

The probability space or sample space Ω is the set of all possible outcomes of an experiment. For example, the sample space of the coin tossing experiment is $\Omega=\{$ head, tail $\}$.

Certain subsets of the sample space are called events, and the probability of these events is determined by a probability measure.

If we roll a dice, then one of its six face values is the outcome of the experiment, so the sample space is $\Omega=\{1,2,3,4,5,6\}$.

An event is a subset of the sample space Ω. The event $\{1,2\}$ occurs when the dice shows a face value less than three.

The probability measures describes the odds that a certain event occurs, for instance $\operatorname{Pr}[\{1,2\}]=1 / 3$ means that the event $\{1,2\}$ will occur with probability $1 / 3$.

A probability measure is not necessarily defined on all subsets of the sample space Ω, but just on all subsets of Ω that are considered events. Nevertheless, we want to have a uniform way to reason about the probability of events. This is accomplished by requiring that the collection of events form a σ-algebra.

A σ-algebra \mathcal{F} is a collection of subsets of the sample space Ω such that the following requirements are satisfied:

S1 The empty set is contained in \mathcal{F}.
S2 If a set E is contained in \mathcal{F}, then its complement E^{c} is contained in \mathcal{F}.

S3 The countable union of sets in \mathcal{F} is contained in \mathcal{F}.

The empty set \varnothing is often called the impossible event.
The sample space Ω is the complement of the empty set, hence is contained in \mathcal{F}. The event Ω is called the certain event.

If E is an event, then $E^{c}=\Omega \backslash E=\Omega-E$ is called the complementary event.

Let \mathcal{F} be a σ-algebra.

Exercise

If A and B are events in \mathcal{F}, then $A \cap B$ in \mathcal{F}.

Exercise

The countable intersection of events in \mathcal{F} is contained in \mathcal{F}.

Exercise

If A and B are events in \mathcal{F}, then $A-B=A \backslash B$ is contained in \mathcal{F}.

Example

Remark

Let \mathcal{A} be a subset of $P(\Omega)$. Then the intersection of all σ-algebras containing \mathcal{A} is a σ-algebra, called the smallest σ-algebra generated by \mathcal{A}. We denote the smallest σ-algebra generated by \mathcal{A} by $\sigma(\mathcal{A})$.

Example

Let $\Omega=\{1,2,3,4,5,6\}$ and $\mathcal{A}=\{\{1,2\},\{2,3\}\}$.

$$
\begin{aligned}
& \sigma(\mathcal{A})=\{\varnothing,\{1,2,3,4,5,6\}, \\
&\{1,2\},\{3,4,5,6\}, \\
&\{2,3\},\{1,4,5,6\}, \\
&\{2\},\{1,3,4,5,6\},\{1\},\{2,3,4,5,6\},\{3\},\{1,2,4,5,6\}, \\
&\{1,2,3\},\{4,5,6\},\{1,3\},\{2,4,5,6\}\}
\end{aligned}
$$

Exercise

Let $\Omega=\{1,2,3,4,5,6\}$ and $\mathcal{A}=\{\{2\},\{1,2,3\},\{4,5\}\}$. Determine $\sigma(\mathcal{A})$.

Exercise

Let $\Omega=\{1,2,3,4,5,6\}$ and $\mathcal{A}=\{\{2\},\{1,2,3\},\{4,5\}\}$. Determine $\sigma(\mathcal{A})$.

Solution

We have

$$
\begin{aligned}
\mathcal{A}=\{ & \{\varnothing, \Omega,\{2\},\{1,3,4,5,6\}, \\
& \{1,2,3\},\{4,5,6\},\{4,5\},\{1,2,3,6\}, \\
& \{1,3\},\{2,4,5,6\},\{6\},\{1,2,3,4,5\}, \\
& \{2,6\},\{1,3,4,5\},\{2,4,5\},\{1,3,6\}\}
\end{aligned}
$$

Let \mathcal{F} be a σ-algebra over the sample space Ω. A probability measure on \mathcal{F} is a function $\operatorname{Pr}: \mathcal{F} \rightarrow[0,1]$ satisfying
$\mathbf{P 1}$ The certain event satisfies $\operatorname{Pr}[\Omega]=1$.
$\mathbf{P} 2$ If the events E_{1}, E_{2}, \ldots in \mathcal{F} are mutually disjoint, then

$$
\operatorname{Pr}\left[\bigcup_{k=1}^{\infty} E_{k}\right]=\sum_{k=1}^{\infty} \operatorname{Pr}\left[E_{k}\right]
$$

Example

Example

Probability Function Let Ω be a sample space and let $a \in \Omega$. Suppose that $\mathcal{F}=P(\Omega)$ is the σ-algebra. Then $\operatorname{Pr}: \Omega \rightarrow[0,1]$ given by

$$
\operatorname{Pr}[A]= \begin{cases}1 & \text { if } a \in A \\ 0 & \text { otherwise }\end{cases}
$$

is a probability measure.
We know that $\mathbf{P} 1$ holds, since $\operatorname{Pr}[\Omega]=1$. $\mathbf{P} \mathbf{2}$ holds as well. Indeed, if E_{1}, E_{2}, \ldots are mutually disjoint events in $P(\Omega)$, then at most one of the events contains a.

$$
\sum_{k=1}^{\infty} \operatorname{Pr}\left[E_{k}\right]=\left\{\begin{array}{ll}
1 & \text { if some set } E_{k} \text { contains a, } \\
0 & \text { if none of the sets } E_{k} \text { contains a. }
\end{array}\right\}=\operatorname{Pr}\left[\bigcup_{k=1}^{\infty} E_{k}\right]
$$

These axioms have a number of familiar consequences. For example, it follows that the complementary event E^{c} has probability

$$
\operatorname{Pr}\left[E^{c}\right]=1-\operatorname{Pr}[E] .
$$

In particular, the impossible event has probability zero, $\operatorname{Pr}[\varnothing]=0$.

Another consequence is a simple form of the inclusion-exclusion principle:

$$
\operatorname{Pr}[E \cup F]=\operatorname{Pr}[E]+\operatorname{Pr}[F]-\operatorname{Pr}[E \cap F],
$$

which is convenient when calculating probabilities.

Another consequence is a simple form of the inclusion-exclusion principle:

$$
\operatorname{Pr}[E \cup F]=\operatorname{Pr}[E]+\operatorname{Pr}[F]-\operatorname{Pr}[E \cap F],
$$

which is convenient when calculating probabilities. Indeed,

$$
\begin{aligned}
\operatorname{Pr}[E \cup F] & =\operatorname{Pr}[E \backslash(E \cap F)]+\operatorname{Pr}[E \cap F]+\operatorname{Pr}[F \backslash(E \cap F)] \\
& =\operatorname{Pr}[E]+\operatorname{Pr}[F \backslash(E \cap F)]+(\operatorname{Pr}[E \cap F]-\operatorname{Pr}[E \cap F]) \\
& =\operatorname{Pr}[E]+\operatorname{Pr}[F]-\operatorname{Pr}[E \cap F] .
\end{aligned}
$$

Exercise

Let E and F be events such that $E \subseteq F$. Show that

$$
\operatorname{Pr}[E] \leqslant \operatorname{Pr}[F]
$$

Exercise

Let E_{1}, \ldots, E_{n} be events that are not necessarily disjoint. Show that

$$
\operatorname{Pr}\left[E_{1} \cup \cdots \cup E_{n}\right] \leqslant \operatorname{Pr}\left[E_{1}\right]+\cdots+\operatorname{Pr}\left[E_{n}\right] .
$$

Conditional Probabilities

Conditional Probabilities

Let E and F be events over a sample space Ω such that $\operatorname{Pr}[F]>0$. The conditional probability $\operatorname{Pr}[E \mid F]$ of the event E given F is defined by

$$
\operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]} .
$$

The value $\operatorname{Pr}[E \mid F]$ is interpreted as the probability that the event E occurs, assuming that the event F occurs.

By definition, $\operatorname{Pr}[E \cap F]=\operatorname{Pr}[E \mid F] \operatorname{Pr}[F]$, and this simple multiplication formula often turns out to be useful.

Law of Total Probability (Simplest Version)

Law of Total Probability
Let Ω be a sample space and A and E events. We have

$$
\begin{aligned}
\operatorname{Pr}[A] & =\operatorname{Pr}[A \cap E]+\operatorname{Pr}\left[A \cap E^{c}\right] \\
& =\operatorname{Pr}[A \mid E] \operatorname{Pr}[E]+\operatorname{Pr}\left[A \mid E^{c}\right] \operatorname{Pr}\left[E^{c}\right] .
\end{aligned}
$$

The events E and E^{c} are disjoint and satisfy $\Omega=E \cup E^{c}$. Therefore, we have

$$
\operatorname{Pr}[A]=\operatorname{Pr}[A \cap E]+\operatorname{Pr}\left[A \cap E^{c}\right] .
$$

The second equality follows directly from the definition of conditional probability.

Bayes' Theorem

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[B \mid A] \operatorname{Pr}[A]}{\operatorname{Pr}[B]} .
$$

We have

$$
\operatorname{Pr}[A \mid B] \operatorname{Pr}[B]=\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B \cap A]=\operatorname{Pr}[B \mid A] \operatorname{Pr}[A] .
$$

Dividing by $\operatorname{Pr}[B]$ yields the claim.

Bayes' Theorem (Second Version)
Bayes' Theorem (Version 2)

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[B \mid A] \operatorname{Pr}[A]}{\operatorname{Pr}[B \mid A] \operatorname{Pr}[A]+\operatorname{Pr}\left[B \mid A^{c}\right] \operatorname{Pr}\left[A^{c}\right]}
$$

By the first version of Bayes' theorem, we have

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[B \mid A] \operatorname{Pr}[A]}{\operatorname{Pr}[B]}
$$

Now apply the law of total probability with $\Omega=A \cup A^{c}$ to the probability $\operatorname{Pr}[B]$ denominator.

Polynomial Identities

Suppose that we use a library that is supposedly implementing a polynomial factorization. We would like to check whether the polynomials such as

$$
\begin{aligned}
& p(x)=(x+1)(x-2)(x+3)(x-4)(x+5)(x-6) \\
& q(x)=x^{6}-7 x^{3}+25
\end{aligned}
$$

are the same.
We can multiply the terms both polynomials and simplify. This uses $\Omega\left(d^{2}\right)$ multiplications for polynomials of degree d.

If the polynomials $p(x)$ and $q(x)$ are the same, then we must have

$$
p(x)-q(x) \equiv 0
$$

If the polynomials $p(x)$ and $q(x)$ are not the same, then an integer $r \in \mathbf{Z}$ such that

$$
p(r)-q(r) \neq 0
$$

would be a witness to the difference of $p(x)$ and $q(x)$.
We can check whether $r \in \mathbf{Z}$ is a witness in $O(d)$ multiplications.

We get the following randomized algorithm for checking whether $p(x)$ and $q(x)$ are the same.

Input: Two polynomials $p(x)$ and $q(x)$ of degree d.
for $i=1$ to t do
$r=$ random(1..100d);
return 'different' if $p(r)-q(r) \neq 0$
end return 'same'

If $p(x) \equiv q(x)$, then every $r \in \mathbf{Z}$ is a non-witness.
If $p(x) \not \equiv q(x)$, then an integer r in the range $1 \leqslant r \leqslant 100 d$ is a witness if and only if it is not a root of $p(x)-q(x)$. The polynomial $p(x)-q(x)$ has at most d roots.

The probability that the algorithm will return 'same' when the polynomials are different is at most

$$
\operatorname{Pr}\left[{ }^{\prime} \operatorname{same} e^{\prime} \mid p(x) \not \equiv q(x)\right] \leqslant\left(\frac{d}{100 d}\right)^{t}=\frac{1}{100^{t}}
$$

Independent Events

Definition
Two events E and F are called independent if and only if

$$
\operatorname{Pr}[E \cap F]=\operatorname{Pr}[E] \operatorname{Pr}[F] .
$$

Two events that are not independent are called dependent.

Suppose that we flip a fair coin twice. Then the sample space is $\{H H, H T, T H, T T\}$. The probability of each elementary event is given by $1 / 4$. For instance, $\operatorname{Pr}[\{H H\}]=1 / 4$.

The event E that the first coin is heads is given by $\{H H, H T\}$. We have $\operatorname{Pr}[E]=1 / 2$. The event F that the second coin is tails is given by $\{H T, T T\}$. We have $\operatorname{Pr}[F]=1 / 2$.

Then $E \cap F$ models the event that the first coin is heads and the second coin is tails. The events E and F are independent, since

$$
\operatorname{Pr}[E \cap F]=\frac{1}{4}=\operatorname{Pr}[E] \operatorname{Pr}[F] .
$$

If E and F are independent, then

$$
\operatorname{Pr}[E \mid F]=\frac{\operatorname{Pr}[E \cap F]}{\operatorname{Pr}[F]}=\frac{\operatorname{Pr}[E] \operatorname{Pr}[F]}{\operatorname{Pr}[F]}=\operatorname{Pr}[E] .
$$

In this case, whether or not F happened has no bearing on the probability of E.

Suppose that $E_{1}, E_{2}, \ldots, E_{n}$ are events. The events are called mutually independent if and only if for all subsets S of
$\{1,2, \ldots, n\}$, we have

$$
\operatorname{Pr}\left[\bigcap_{i \in S} E_{i}\right]=\prod_{i \in S} \operatorname{Pr}\left[E_{i}\right] .
$$

Please note that it is not sufficient to show this condition for $S=\{1,2, \ldots, n\}$, but we really need to show this for all subsets.

Example

We toss a fair coin three times. Consider the events:

$$
E_{1}=\text { the first two values are the same }
$$

$E_{2}=$ the first and last value are the same,
$E_{3}=$ the last two values are the same.
The probabilities are $\operatorname{Pr}\left[E_{1}\right]=\operatorname{Pr}\left[E_{2}\right]=\operatorname{Pr}\left[E_{3}\right]=1 / 2$. We have
$\operatorname{Pr}\left[E_{1} \cap E_{2}\right]=\operatorname{Pr}\left[E_{2} \cap E_{3}\right]=\operatorname{Pr}\left[E_{1} \cap E_{3}\right]=\operatorname{Pr}[\{H H H, T T T\}]=\frac{1}{4}$.
Thus, all three pairs of events are independent. But

$$
\operatorname{Pr}\left[E_{1} \cap E_{2} \cap E_{3}\right]=\frac{1}{4} \neq \operatorname{Pr}\left[E_{1}\right] \operatorname{Pr}\left[E_{2}\right] \operatorname{Pr}\left[E_{3}\right]=\frac{1}{8},
$$

so they are not mutually independent.

Example

A school offers as electives $A=$ athletics, $B=$ band, and $C=$ Mandarin Chinese.

$$
\begin{array}{llll}
\operatorname{Pr}[A \cap B \cap C] & =0.04 & \operatorname{Pr}[\bar{A} \cap B \cap C]=0.2 \\
\operatorname{Pr}[A \cap B \cap \bar{C}] & =0.06 & \operatorname{Pr}[\bar{A} \cap B \cap \bar{C}]=0.1 \\
\operatorname{Pr}[A \cap \bar{B} \cap C]=0.1 & \operatorname{Pr}[\bar{A} \cap \bar{B} \cap C]=0.16 \\
\operatorname{Pr}[A \cap \bar{B} \cap \bar{C}]=0 & \operatorname{Pr}[\bar{A} \cap \bar{B} \cap \bar{C}]=0.34
\end{array}
$$

Then $\operatorname{Pr}[A \cap B \cap C]=0.04=\operatorname{Pr}[A] \operatorname{Pr}[B] \operatorname{Pr}[C]=0.2 \cdot 0.4 \cdot 0.5$. But no two of the three events are pair-wise independent:

$$
\operatorname{Pr}[A \cap B]=0.1 \neq \operatorname{Pr}[A] \operatorname{Pr}[B]=0.2 \cdot 0.4=0.08
$$

Verifying Matrix Multiplication

The Problem
Let A, B, and C be $n \times n$ matrices over $\mathbf{F}_{2}=\mathbf{Z} / 2 \mathbf{Z}$.
Is $A B=C$?

If we use traditional matrix multiplication, then forming the product of A and B requires $\Theta\left(n^{3}\right)$ scalar operations. Using the fastest known matrix multiplications takes about $\Theta\left(n^{2.37}\right)$ scalar operations. Can we do better using a randomized algorithm?

A witness for $A B \neq C$ would be a vector v such that

$$
A B v \neq C v
$$

We can check whether a vector is a witness in $O\left(n^{2}\right)$ time.

Theorem

If $A B \neq C$, and we choose a vector v uniformly at random from $\{0,1\}^{n}$, then v is a witness for $A B \neq C$ with probability $\geqslant 1 / 2$. In other words,

$$
\operatorname{Pr}_{v \in \mathbf{F}_{2}^{n}}[A B v=C v \mid A B \neq C] \leqslant \frac{1}{2} .
$$

Simple Observation

Lemma

Choosing $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbf{F}_{2}^{n}$ uniformly at random is equivalent to choosing each v_{k} independently and uniformly at random from \mathbf{F}_{2}.

Proof.

If we choose each component v_{k} independently and uniformly at random from \mathbf{F}_{2}, then each vector v in \mathbf{F}_{2}^{n} is created with probability $1 / 2^{n}$.

Conversely, if $v \in \mathbf{F}_{2}^{n}$ is chosen uniformly at random, then the components are independent and $v_{k}=1$ with probability $1 / 2$.

$$
\text { Let } D=A B-C \neq 0 \text {. Then } A B v=C v \text { if and only if } D v=0 \text {. }
$$

Since $D \neq 0$, the matrix D must have a nonzero entry. Without loss of generality, suppose that $d_{11} \neq 0$.

If $D v=0$, then we must have

$$
\sum_{k=1}^{n} d_{1 k} v_{k}=0
$$

Since $d_{11} \neq 0$, this is equivalent to

$$
v_{1}=-\frac{\sum_{k=2}^{n} d_{1 k} v_{k}}{d_{11}}
$$

Idea (Principle of Deferred Decisions)
Rather than arguing with the vector $v \in \mathbf{F}_{2}^{n}$, we can choose each component of v uniformly at random from \mathbf{F}_{2} in order form v_{n} down to v_{1}.

Suppose that the components $v_{n}, v_{n-1}, \ldots, v_{2}$ have been chosen. This determines the right-hand side of

$$
v_{1}=-\frac{\sum_{k=2}^{n} d_{1 k} v_{k}}{d_{11}}
$$

Now there is just one choice of v_{1} that will make the equality true, so the probability that this equation is satisfied is at most $1 / 2$. In other words, the probability

$$
\operatorname{Pr}[A B v=C v \mid A B \neq C] \leqslant 1 / 2
$$

