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Dealing with NP-Complete 
Problems



Dealing with NP-Completeness
Suppose the problem you need to solve is NP-complete.  What do 
you do?

You might be able to show that bad running time does not 
happen for inputs of interest

You might find heuristics to improve running time in  many cases 
(but no guarantees)

You may be able to find a polynomial time algorithm that is 
guaranteed to give an answer close to optimal



Optimization Problems
• Concentrate on approximation algorithms for optimization 

problems:

• every candidate solution  has a positive cost

• Minimization problem: goal is to find smallest cost solution

• Ex:  Vertex cover problem, cost is size of VC

• Maximization problem: goal is to find largest cost solution

• Ex:  Clique problem, cost is size of clique



Approximation Algorithms

An approximation algorithm for an optimization problem

runs in polynomial time and

always returns a candidate solution



Ratio Bound

Ratio bound: Bound the ratio of the cost of the solution returned 
by the approximation algorithm and the cost of an optimal solution

minimization problem:  

cost of approx solution / cost of optimal solution

maximization problem:

cost of optimal solution / cost of approx solution

So ratio is always at least 1, goal is to get it as close to 1 as we can



Approximation Algorithms

A poly-time algorithm A is called a δ-approximation 
algorithm for a minimization problem P if and only if for 
every problem instance I of P with an optimal solution value 
OPT(I), it delivers a solution of value A(I) satisfying 

A(I) ≤ δOPT(I).



Approximation Algorithms

A poly-time algorithm A is called a δ-approximation 
algorithm for a maximization problem P if and only if for 
every problem instance I of P with an optimal solution value 
OPT(I), it delivers a solution of value A(I) satisfying 

δA(I) ≥ OPT(I).



Vertex Cover



Approximation Algorithm for Minimum 
Vertex Cover Problem

input:  G = (V,E)

C := ∅

E' := E

while E' ≠ ∅ do

   pick any (u,v) in E'

   C := C U {u,v}

   remove from E' every edge incident on u or v

endwhile

return C



Min VC Approx Algorithm

• Time is O(E), which is polynomial.

• How good an approximation does it provide?

• Let's look at an example.



Min VC Approx Alg Example

a gfe
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choose (b,c):  remove (b,c), (b,a), (c,e), (c,d)
choose (e,f): remove (e,f), (e,d), (d,f)
Answer:  {b,c,e,f,d,g}
Optimal answer:  {b,d,e}
Algorithm's ratio bound is 6/3 = 2.



Ratio Bound of Min VC Alg

Theorem:  Min VC approximation algorithm has ratio bound of 2.

Proof:  Let A be the total set of edges chosen to be removed.

• Size of VC returned is 2*|A| since no two edges in A share an 
endpoint.

• Size of A is at most size of a min VC since min VC must contain at 
least one node for each edge in A.

• Thus cost of approx solution is at most twice cost of optimal solution



More on Min VC Approx Alg
• Why not run the approx alg and then divide by 2 to get the 

optimal cost?

• Because answer is not always exactly twice the optimal, just 
never more than twice the optimal.

• For instance, a different choice of edges to remove gives a 
different answer:

• Choosing (d,e) and then (b,c) produces answer {b,c,d,e} with cost 4 as 
opposed to optimal cost 3



Metric TSP



Triangle Inequality

• Assume TSP inputs with the triangle inequality:

• distances satisfy property that for all cities a, b, and c,         
dist(a,c) ≤ dist(a,b) + dist(b,c)

• i.e., shortest path between 2 cities is the direct route

• this metric TSP is still NP-hard

• Depending on what you are modeling with the distances, an 
application might or might satisfy this condition.



TSP Approximation Algorithm
• input:  set of cities and distances b/w them that satisfy the 

triangle inequality

• create complete graph G = (V,E), where V is set of cities and 
weight on edge (a,b) is dist(a,b)

• compute MST of G

• Go twice around the MST to get a tour (that will have 
duplicates)

• Remove duplicates to avoid visiting a city more than once



Example
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Form MST DFS Traversal, Double Edges,
Eulerian Tour of 2-Multigraph

Skip cities that 
were already visited



Analysis of TSP Approx Alg

• Running time is polynomial (creating complete graph takes O(V2) 
time, Kruskal's MST algorithm takes time O(E log E) = O(V2log V).

• How good is the quality of the solution?



Analysis of TSP Approx Alg

• cost of approx solution ≤ 2*weight of MST, by triangle inequality

• Why?

ca

b
when tour created by
going around the MST 
is adjusted to remove duplicate
nodes, the two red edges
are replaced with the
green diagonal edge



Analysis of TSP Approx Alg

• weight of MST < length of min tour

• Why?  

• Min tour minus one edge is a spanning tree T, whose weight must 
be at least the weight of MST.

• And weight of min tour is greater than weight of T.



Analysis of TSP Approx Alg

• Putting the pieces together:

• cost of approx solution ≤ 2*weight of MST

" "  ≤ 2*cost of min tour

• So approx ratio is at most 2.



(non-metric) TSP



TSP Without Triangle Inequality

Theorem:  If P ≠ NP, then no polynomial time approximation 
algorithm for TSP (w/o triangle inequality) can have a constant 
ratio bound.

Proof:  We will show that if there is such an approximation 
algorithm, then we could solve a known NP-complete problem 
(Hamiltonian cycle) in polynomial time, so P would equal NP.



HC Exact Algorithm using TSP Approximation 
Algorithm

Input:  G = (V,E)

1. convert G to this TSP input:

• one city for each node in V

• distance between cities u and v is 1 if (u,v) is in E

• distance between cities u and v is r*|V| if (u,v) is not in E, where 
r is the ratio bound of the TSP approx alg

• Note:  This TSP input does not satisfy the triangle inequality



HC (Exact) Algorithm Using TSP Approximation 
Algorithm

2. run TSP approx alg on the input just created

3. if cost of approx solution returned in step 2 is ≤ r*|V| then return 
YES else return NO

Running time is polynomial.



Correctness of HC Algorithm

• If G has a HC, then optimal tour in TSP input constructed 
corresponds to that cycle and has weight |V|.  

• Approx algorithm returns answer with cost at most r*|V|.

• So if G has HC, then algorithm returns YES.



Correctness of HC Algorithm

• If G has no HC, then optimal tour for TSP input constructed must 
use at least one edge not in G, which has weight r*|V|.

• So weight of optimal tour is > r*|V|, and answer returned by 
approx alg has weight > r*|V|.

• So if G has not HC, then algorithm returns NO.



Set Cover



Set Cover

Given a universe U of n elements, a collection S = 
{S1,S2,...,Sk} of subsets of U, and a cost function       
c: S->Q+, find a minimum cost subcollection of S that 
covers all the elements of U. 



Example

We might want to select a committee consisting of people who 
have combined all skills. 



Cost-Effectiveness

We are going to pick a set according to its cost effectiveness.

Let C be the set of elements that are already covered.

The cost effectiveness of a set S is the average cost at which it 
covers new elements: c(S)/|S-C|. 



Greedy Set Cover
C := ∅

while C ≠ U do

Find most cost effective set in current iteration, say S, and pick 
it.  

For each e in S, set price(e)= c(S)/|S-C|.

C := C∪S

Output C



Theorem

Greedy Set Cover is an Hm-approximation algorithm, 
where m = max{ |Si| : 1<=i<=k}. 



Lemma
For all sets T in S, we have 

∑e in T price(e) <= c(T) Hx  with x=|T|

Proof: Let e in T∩(Si \ ∪j<i  Sj) and 

Vi= T \ ∪j<i  Sj be the remaining part of T before being covered 
by the greedy cover.



Lemma (2)
Then the greedy property implies that

price(e) <= c(T)/|Vi|

Let e1,...,em be the elements of T in the order chosen by the greedy 
algorithm. 

It follows that 

price(ek) <= w(T)/(|T|-k+1). 

Summing over all k yields the claim.   



Proof of the Theorem

Let A be the optimal set cover and B the set cover 
returned by the greedy algorithm.

∑ price(e) <= ∑S in A ∑e in S price(e)                                 
By the lemma, this is bounded by 

∑T in A c(T)H|T| 

The latter sum is bounded by ∑T in A c(T) times the 
Harmonic number of the cardinality of the largest set in S. 



Example

Let U = {e1,...,en} 

S = { {e1},...,{en}, {e1,...,en } } 

c({ei}) = 1/i

c({e1,...,en })=1+ε

The greedy algorithm computes a cover of cost Hn and the 
optimal cover is 1+ε


