
A Randomized Algorithms for
Minimum Cuts

Andreas Klappenecker

Minimum Cut

A cut in a graph G=(V,E) is a partition of the set V of vertices into
two disjoint sets V1 and V2.

Edges with one end in V1 and the other end in V2 are said to cross
the cut. A cut with a minimum number of edges crossing the cut is
called a minimum cut.

Goal

Find a randomized algorithm to determine a minimum cut with high
probability.

Multigraphs

A multigraph G=(V,E) is like a graph, but may contain multiple edges
between vertices. Thus, E is a multiset of edges rather than a set
of edges.

A Randomized Algorithm for

Minimum Cuts

Andreas Klappenecker

A randomized algorithm is an algorithm that receives, in addition to its input,
a stream of random bits which is used to make random choices. The random
bits are assumed to be independent of the input. A salient feature is that
repeated runs of a randomized algorithm with fixed input data will, in gen-
eral, not produce the same result. You might be perplexed that such a lack
of definiteness is desirable, but consider that this feature allows to transform
deterministic algorithms with bad worst case behaviour into randomized algo-
rithms that perform well with high probability on any input. I hope that the
next example can convey that randomized algorithms are often simple and
efficient.

§1 A Minimum Cut Algorithm

Let G = (V,E) be a connected, undirected, loopfree multigraph with n ver-
tices. A multigraph is like a graph but may contain multiple edges between
two vertices, as the following example shows.

A B

C D E

F

A cut in the multigraph G = (V,E) is a partition of the vertex set V into two
disjoint nonempty sets V = V1∪V2. An edge with one end in V1 and the other
in V2 is said to cross the cut. The cut is often identified with the multiset of
crossing edges.

The term cut is chosen because the removal of the edges in a cut partitions
the multigraph. For example, if we partition V = {A,B,C,D,E, F} into the
sets V1 = {A,C} and V2 = {B,D,E, F} in the previous example, then this
cut has five crossing edges, and removing these edges yields the disconnected
multigraph:

0 c© 2009-2012 by Andreas Klappenecker. All rights reserved.

Edge Contraction

Given a multigraph G=(V,E) and an edge e={C,D} in E, the multigraph
G/e is obtained from G by contracting the edge e, that is, by
identifying the vertices C and D and removing all self-loops.

A B

C D E

F

The size of the cut is given by the number of edges crossing the cut. Our goal
is to determine the minimum size of a cut in a given multigraph G.

We describe a very simple randomized algorithm for this purpose. If e is
an edge of a loopfree multigraph G, then the multigraph G/e is obtained from
G by contracting the edge e = {x, y}, that is, we identify the vertices x and y
and remove all resulting loops.

A B

C D E

F

{C,D}
=⇒

A B

D E

F

The above figure shows a multigraph G and the multigraph G/{C,D} resulting
from contracting an edge between C and D. We keep the label of one vertex
to avoid cluttered notations, but keep in mind that a node D in the graph
G/{C,D} really represents the set of all nodes that are identified with D.

Note that any cut of G/e induces a cut of G. For instance, in the above
example the cut {A,B} ∪ {D,E,F} in G/{C,D} induces the cut {A,B} ∪
{C,D,E, F} in G. In general, the vertices that have been identified in G/e
are in the same partition of G.

The size of the minimum cut of G/e is at least the size of the minimum
cut of G, because all edges are kept. Thus we can use successive contractions
to estimate the size of the minimum cut of G. This is the basic idea of the
following randomized algorithm.

The algorithms Contract selects uniformly at random one of the remaining
edges and contracts this edge until two vertices remain. The cut determined
by this algorithm contains precisely the edges that have not been contracted.
Counting the edges between the remaining two vertices yields an estimate of
the size of the minimum cut of G.

The algorithm is best understood by an example. Figure 0.1 shows two
different runs of the algorithm Contract. Let us have a closer look at the run

Edge Contraction

An edge in G remains in G/e with the exception of the edges e.

If e={C,D}, then any edge incident with C or D in G is incident in
G/e with the merged node {C,D}.

Main Idea
A cut in G/{C,D} leads to a cut in G such that C and D are in the
same block of the cut.

The size of the minimum cut of G/{C,D} is at least the size of the
minimum cut of G.

If e={C,D} did not cross a minimum cut, then G/e has the same size
minimum cut than G.

If e={C,D} crosses the minimum cut, then the size of the minimum
cut of G/e might be larger than the size of the minimum cut of G.

The Randomized Algorithm
Contract(G=(V,E)) // G is a connected loopfree multigraph with |V|>=2.

while (|V|>2) {

Select e ∈ E uniformly at random;

G := G/e;

}
return |E|; // |E| is an upper bound on the minimum cut of G.

Example

A B

C D E

F

A B

C D

F

A B

C D

A B

D

A B

A B

C D E

F

A B

C D

F

B

C D

F

C D

F

C D

Fig. 0.1 Two different runs of the Contract algorithm. The algorithm does
not always produce the correct result. The run shown in the left column
correctly determines the minimum cut size to be 3. The run shown in the
right column fails to produce the correct result; here the algorithm will claim
that the size of the minimum cut is 6.

A B

C D E

F

A B

C D

F

A B

C D

A B

D

A B

A B

C D E

F

A B

C D

F

B

C D

F

C D

F

C D

Fig. 0.1 Two different runs of the Contract algorithm. The algorithm does
not always produce the correct result. The run shown in the left column
correctly determines the minimum cut size to be 3. The run shown in the
right column fails to produce the correct result; here the algorithm will claim
that the size of the minimum cut is 6.

Tex{//{E,F}t

Example

A B

C D E

F

A B

C D

F

A B

C D

A B

D

A B

A B

C D E

F

A B

C D

F

B

C D

F

C D

F

C D

Fig. 0.1 Two different runs of the Contract algorithm. The algorithm does
not always produce the correct result. The run shown in the left column
correctly determines the minimum cut size to be 3. The run shown in the
right column fails to produce the correct result; here the algorithm will claim
that the size of the minimum cut is 6.

Tex{//{D,F}t

A B

C D E

F

A B

C D

F

A B

C D

A B

D

A B

A B

C D E

F

A B

C D

F

B

C D

F

C D

F

C D

Fig. 0.1 Two different runs of the Contract algorithm. The algorithm does
not always produce the correct result. The run shown in the left column
correctly determines the minimum cut size to be 3. The run shown in the
right column fails to produce the correct result; here the algorithm will claim
that the size of the minimum cut is 6.

c

Example

Tex{//{C,D}t

A B

C D E

F

A B

C D

F

A B

C D

A B

D

A B

A B

C D E

F

A B

C D

F

B

C D

F

C D

F

C D

Fig. 0.1 Two different runs of the Contract algorithm. The algorithm does
not always produce the correct result. The run shown in the left column
correctly determines the minimum cut size to be 3. The run shown in the
right column fails to produce the correct result; here the algorithm will claim
that the size of the minimum cut is 6.

A B

C D E

F

A B

C D

F

A B

C D

A B

D

A B

A B

C D E

F

A B

C D

F

B

C D

F

C D

F

C D

Fig. 0.1 Two different runs of the Contract algorithm. The algorithm does
not always produce the correct result. The run shown in the left column
correctly determines the minimum cut size to be 3. The run shown in the
right column fails to produce the correct result; here the algorithm will claim
that the size of the minimum cut is 6.

Example

Tex{//{B,D}t

A B

C D E

F

A B

C D

F

A B

C D

A B

D

A B

A B

C D E

F

A B

C D

F

B

C D

F

C D

F

C D

Fig. 0.1 Two different runs of the Contract algorithm. The algorithm does
not always produce the correct result. The run shown in the left column
correctly determines the minimum cut size to be 3. The run shown in the
right column fails to produce the correct result; here the algorithm will claim
that the size of the minimum cut is 6.

A B

C D E

F

A B

C D

F

A B

C D

A B

D

A B

A B

C D E

F

A B

C D

F

B

C D

F

C D

F

C D

Fig. 0.1 Two different runs of the Contract algorithm. The algorithm does
not always produce the correct result. The run shown in the left column
correctly determines the minimum cut size to be 3. The run shown in the
right column fails to produce the correct result; here the algorithm will claim
that the size of the minimum cut is 6.

Example

A B

C D E

F

A B

C D

F

A B

C D

A B

D

A B

A B

C D E

F

A B

C D

F

B

C D

F

C D

F

C D

Fig. 0.1 Two different runs of the Contract algorithm. The algorithm does
not always produce the correct result. The run shown in the left column
correctly determines the minimum cut size to be 3. The run shown in the
right column fails to produce the correct result; here the algorithm will claim
that the size of the minimum cut is 6.

Contractions: {E,F}, {D,F}, {C,D}, {B,D}. Cut: {A}, {B,C,D,E,F} t

A B

C D E

F

A B

C D

F

A B

C D

A B

D

A B

A B

C D E

F

A B

C D

F

B

C D

F

C D

F

C D

Fig. 0.1 Two different runs of the Contract algorithm. The algorithm does
not always produce the correct result. The run shown in the left column
correctly determines the minimum cut size to be 3. The run shown in the
right column fails to produce the correct result; here the algorithm will claim
that the size of the minimum cut is 6.

Intuition

Why does it work?

If a cut is of large size, then it is likely that one of its crossing
edges is selected for contraction.

If a cut is of small size, then it is less likely that one of its
crossing edges is selected for contraction.

=> Algorithm has a natural bias towards minimum cuts!

Analysis

Let C be one fixed minimum cut of a multigraph G with n vertices.

Let Ek denote the event that no edge of C is picked for contraction
during the kth iteration of the algorithm.

Goal: Estimate Pr[E1∩E2∩...∩En-2] = Pr[find minimum cut C]

Analysis

We have Pr[E∩F] = Pr[E|F] Pr[F].

Thus, it follows that

Pr[En-2∩En-3∩...∩E1] = Pr[En-2|En-3∩...∩E1] Pr[En-3∩...∩E1]

 = Pr[En-2|En-3∩...∩E1] Pr[En-3 |En-4∩...∩E1]Pr[En-4∩...∩E1]

 = Pr[En-2|En-3∩...∩E1] Pr[En-3 |En-4∩...∩E1]...Pr[E2∩E1|E1] Pr[E1]

The conditional probabilities are not difficult to calculate!

Analysis

Suppose that the size of the minimum cut is k.

This means that the degree of each vertex is at least k, hence there
exist at least kn/2 edges.

The probability to select an edge crossing the cut C in the first step
is at most k/(kn/2) = 2/n. Consequently, Pr[E1] ≥ 1 − 2/n = (n − 2)/n.

Analysis

At the beginning of the mth step, with m ≥ 2, there are n−m+1
remaining vertices. Assuming that none of the edges crossing C
were selected in previous steps, the minimum cut is still at least k,
hence the multigraph has at this stage at least k(n-m+1)/2 edges.
The

probability to select an edge crossing the cut C is 2/(n-m+1). It
follows that

Pr[Em|Em-1∩...∩E1] ≥ 1 − 2/(n-m+1) = (n-m-1)/(n-m+1) .

As
before!

Conclusion

picked during an execution of the algorithm is Pr[∩n−2
j=1Ej]. By Exercise 0.2,

this probability can be calculated by

Pr[∩n−2
m=1Em] =

(

n−2
∏

m=2

Pr[Em| ∩m−1
!=1 E!]

)

Pr[E1]. (1)

Suppose that the size of the minimum cut is k. This means that the
degree of each vertex is at least k, hence there exist at least kn/2 edges. The
probability to select an edge crossing the cut C in the first step is at most
k/(kn/2) = 2/n. Consequently, Pr[E1] ≥ 1− 2/n = (n− 2)/n.

Similarly, at the beginning of the mth step, with m ≥ 2, there are n−m+1
remaining vertices. The minimum cut is still at least k, hence the multigraph
has at this stage at least k(n − m + 1)/2 edges. Assuming that none of the
edges crossing C was selected in an earlier step, the probability to select an
edge crossing the cut C is 2/(n −m+ 1). It follows that

Pr
[

Em|
m−1
⋂

j=1

Ej
]

≥ 1−
2

n−m+ 1
=

n−m− 1

n−m+ 1
.

Applying these lower bounds to the terms in equation (1) yields the result:

Pr
[

n−2
⋂

j=1

Ej
]

≥
n−2
∏

m=1

(

n−m− 1

n−m+ 1

)

=
2

n(n− 1)
.

The last equality is obtained by canceling terms in the telescoping product.
In conclusion, we have shown that the contraction algorithm yields the

correct answer with probability at least Ω(1/n2).

Repetitions. We can repeatedly execute the randomized algorithm Con-
tract and take the minimum of all results. Recall from calculus that

(

1 +
x

n

)n
≤ ex,

and, in fact, limn→∞
(

1 + x
n

)n
= ex. The probability that the algorithm fails to

produce the correct result in one execution is Pr[failure] = (1− 2/n2). Recall
that for independent event E and F , the probability is given by Pr[E ∩ F] =
Pr[E] Pr[F]. Therefore, if we execute the algorithm n2/2 times, then the
probability that the repeated executions will never reveal the correct size of
the minimum cut is given by (1− 2/n2)n

2/2 ≤ e−1.

Repetitions

Run the algorithm a(n-1)n/2=a(2) times. Since 1-x <= e-x holds for
all x, the probability that one of the a runs finds the minimum cut
is at least

Choosing a=c ln n, so a total of c ln(n) (2) repetitions yields

Pr[find minimum cut] >= 1-exp(-cln n) = 1-1/nc.

1−
�
1− 1�n

2

�
�a(n2)

≥ 1− e−a

n

n

