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The Birthday Problem

What is the probability puni that among a group of m 
people, at least two share the same birthday? 



Solution

Let’s solve the problem for arbitrary planets. Let’s assume that the 
m people live on a planet that has n days per year. Then

is the probability that no two share a birthday, so 

assuming that m <= n and the birthdays are independent and 
uniformly distributed. 
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Lower Bound

Since 1-x <= exp(-x) holds for all real numbers x, we have 
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Consequence

m ≥ 1
2
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δ 0 <

δ ≤ 1 puni

puni ≥ 1−δ

n = 365

m 23 42 59 72

puni 0.5 0.9 0.99 0.999



The Flaw

There are fewer births on weekends than during the week.

There are fewer births on July 4 than on other days in July.

There are significant seasonal variations.

=> Birthdays are not uniformly distributed.



Nonuniform Birthday Problem
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Relation

(1/n, 1/n, . . . , 1/n) ≺ (p1, p2, . . . , pn),
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