
Greedy Algorithms
and Matroids

Andreas Klappenecker

Greedy Algorithms

A greedy algorithm solves an optimization problem by working in
several phases.

In each phase, a decision is made that is locally optimal given the
information that has been obtained so far. This decision is made
without regard for future consequences.

This greedy “take what you can get now” strategy is explains the
name for this class of algorithms.

Correct Greedy Algorithms

When a greedy algorithm terminates, then the hope is that the
greedy choices in each phase lead to a global optimum of the
optimization problem. If a global optimum is always reached, then
the algorithm is correct.

Properties

A greedy algorithm successively solves subproblems of the
optimization problem.

An optimization problem has optimal substructure if and only if an
optimal solution to the problem contains within it optimal solutions to
subproblems.

Correct greedy algorithms require that the problem has the optimal
substructure property.

Properties

The greedy choice property is that a globally optimal solution can be
arrived at by making a series of locally optimal choices.

A correctness of a greedy algorithm will in general rely on the
optimal substructure and greedy choice property.

Greedy Algorithms

Greedy algorithms are easily designed, but correctness of the
algorithm is harder to show.

We will look at some general principles that allow one to prove that
the greedy algorithm is correct.

Matroids

Matroid

Let S be a finite set, and F a nonempty family of subsets of S, that is, F⊆
P(S).

We call (S,F) a matroid if and only if

M1) If B∈F and A ⊆ B, then A∈F.

! [The family F is called hereditary]

M2) If A,B∈F and |A|<|B|, then there ! exists x in B\A such that A∪{x} in F

! [This is called the exchange property]

Matric Matroids
Let M be a matrix.

Let S be the set of rows of M and

F = { A | A⊆S, A is linearly independent }

Claim: (S,F) is a matroid.

Matric Matroids
Let M be a matrix.

Let S be the set of rows of M and

F = { A | A⊆S, A is linearly independent }

Claim: (S,F) is a matroid.

Clearly, F is not empty (it contains every row of M).

Matric Matroids
Let M be a matrix.

Let S be the set of rows of M and

F = { A | A⊆S, A is linearly independent }

Claim: (S,F) is a matroid.

Clearly, F is not empty (it contains every row of M).

M1) If B is a set of linearly independent rows of M, then any subset A of B is
linearly independent. Thus, F is hereditary.

Matric Matroids
Let M be a matrix.

Let S be the set of rows of M and

F = { A | A⊆S, A is linearly independent }

Claim: (S,F) is a matroid.

Clearly, F is not empty (it contains every row of M).

M1) If B is a set of linearly independent rows of M, then any subset A of B is
linearly independent. Thus, F is hereditary.

M2) If A, B are sets of linearly independent rows of M, and |A|<|B|, then dim
span A < dim span B. Choose a row x in B that is not contained in span A.
Then A∪ {x} is a linearly independent subset of rows of M.Therefore, F
satisfies the exchange property.

Undirected Graphs

Let V be a finite set,

E a subset of { e | e ⊆ V, |e|=2 }

Then (V,E) is called an undirected graph.

We call V the set of vertices and E the set of edges of the graph.

a b

c
d

V = {a,b,c,d}

E = { !{a,b}, {a,c}, {a,d},
! {b,d}, {c,d} }

Induced Subgraphs

Let G=(V,E) be a graph.

We call a graph (V,E’) an induced subgraph of G if and only if its
edge set E’ is a subset of E.

Thus, an induced subgraph of G=(V,E) has the same vertex set V, and
no edges that are not already contained in E.

Spanning Trees

Given a connected graph G, a spanning tree of G is an induced
subgraph of G that happens to be a tree and connects all vertices of
G. If the edges are weighted, then a spanning tree of G with
minimum weight is called a minimum spanning tree.

a b

c
d

1

3

5

42

Graphic Matroids

Let G=(V,E) be an undirected graph.

Choose S = E and F = { A | H = (V,A) is an induced subgraph of G such that H is a
forest }.

Claim: (S,F) is a matroid.

Graphic Matroids

Let G=(V,E) be an undirected graph.

Choose S = E and F = { A | H = (V,A) is an induced subgraph of G such that H is a
forest }.

Claim: (S,F) is a matroid.

M1) F is a nonempty hereditary set system.

Graphic Matroids

Let G=(V,E) be an undirected graph.

Choose S = E and F = { A | H = (V,A) is an induced subgraph of G such that H is a
forest }.

Claim: (S,F) is a matroid.

M1) F is a nonempty hereditary set system.

M2) Let A and B in F with |A| < |B|. Then (V,B) has fewer trees than (V,A).
Therefore, (V,B) must contain a tree T whose vertices are in different trees in the
forest (V,A). One can add the edge x connecting the two different trees to A and
obtain another forest (V,A∪{x}).

Weight Functions

A matroid (S,F) is called weighted if it equipped with a weight
function w: S->R+, i.e., all weights are positive real numbers.

If A is a subset of S, then

! w(A) := Σa in A w(a).

Weight functions of this form are sometimes called “linear”
weight functions.

Greedy Algorithm for Matroids

Greedy(M=(S,F),w) // maximizing version

A := ∅;

Sort S into monotonically decreasing order by weight w.

for each x in S taken in monotonically decreasing order do

 if A∪{x} in F then A := A∪{x}; fi;

od;

return A;

Correctness

Theorem: Let M= (S,F) be a weighted matroid with weight
function w. Then Greedy(M,w) returns a set in F of maximal
weight.

[Thus, even though Greedy algorithms in general do not produce
optimal results, the greedy algorithm for matroids does! This
algorithm is applicable for a wide class of problems. Yet, the
correctness proof for Greedy is not more difficult than the
correctness for special instance such as Huffman coding. This is
economy of thought!]

Correctness

Seeking a contradiction, suppose that Greedy returns C in F, but
there exists B in F such that w(B)>w(C).

Since w is nonnegative, we can assume that B,C are bases; say B=
{b1,...,bn} and C={c1,...,cn}.

Let i be the smallest index such that w(b1)<=w(c1),...,w(bi-1)<=w(ci-1),
and w(bi)>w(ci).

Greedy would have picked bi in the ith step . Indeed, {b1,...,bi} and
{c1,...,ci-1} are in F, hence {c1,...,ci-1,bi} in F by the exchange axiom.
Thus w(B)<=W(C), contradiction!!!

Complexity

Let n = |S| = # elements in the set S.

Sorting of S: O(n log n)

The for-loop iterates n times. In the body of the loop one
needs to check whether A∪{x} is in F. If each check takes f
(n) time, then the loop takes O(n f(n)) time.

Thus, Greedy takes O(n log n + n f(n)) time.

Minimizing or Maximizing?

Let M=(S,F) be a matroid.

The algorithm Greedy(M,w) returns a set A in F maximizing the
weight w(A).

If we would like to find a set A in F with minimal weight, then we can
use Greedy with weight function

! w’(a) = m-w(a) !for a in A,

where m is a real number such that m > maxs in S w(s).

Matric Matroids

Let M be a matrix. Let S be the set of rows of the matrix M
and

F = { A | A⊆S, A is linearly independent }.

Weight function w(A)=|A|.

Matric Matroids

Let M be a matrix. Let S be the set of rows of the matrix M
and

F = { A | A⊆S, A is linearly independent }.

Weight function w(A)=|A|.

What does Greedy((S,F),w) compute?

Matric Matroids

Let M be a matrix. Let S be the set of rows of the matrix M
and

F = { A | A⊆S, A is linearly independent }.

Weight function w(A)=|A|.

What does Greedy((S,F),w) compute?

The algorithm yields a basis of the vector space spanned by
the rows of the matrix M.

Graphic Matroids

Let G=(V,E) be an undirected connected graph.

Let S = E and F = { A | H = (S,A) is an induced subgraph of G such that H is a
forest }.

Let w be a weight function on E.

Define w’(a)=m-w(a), where m>w(a), for all a in A.

Greedy((S,F), w’) returns a minimum spanning tree of G. This algorithm in known
as Kruskal’s algorithm.

Consider the edges in increasing order of weight,
add an edge iff it does not cause a cycle
[Animation taken from Prof. Welch’s lecture notes]

Kruskal's MST algorithm

7

16
45

6 8

11

15

14

17

10

13

3

12

29

18

Consider the edges in increasing order of weight,
add an edge iff it does not cause a cycle
[Animation taken from Prof. Welch’s lecture notes]

Kruskal's MST algorithm

7

16
45

6 8

11

15

14

17

10

13

3

12

29

18

Consider the edges in increasing order of weight,
add an edge iff it does not cause a cycle
[Animation taken from Prof. Welch’s lecture notes]

Kruskal's MST algorithm

7

16
45

6 8

11

15

14

17

10

13

3

12

29

18

Consider the edges in increasing order of weight,
add an edge iff it does not cause a cycle
[Animation taken from Prof. Welch’s lecture notes]

Kruskal's MST algorithm

7

16
45

6 8

11

15

14

17

10

13

3

12

29

18

Consider the edges in increasing order of weight,
add an edge iff it does not cause a cycle
[Animation taken from Prof. Welch’s lecture notes]

Kruskal's MST algorithm

7

16
45

6 8

11

15

14

17

10

13

3

12

29

18

Consider the edges in increasing order of weight,
add an edge iff it does not cause a cycle
[Animation taken from Prof. Welch’s lecture notes]

Kruskal's MST algorithm

7

16
45

6 8

11

15

14

17

10

13

3

12

29

18

Consider the edges in increasing order of weight,
add an edge iff it does not cause a cycle
[Animation taken from Prof. Welch’s lecture notes]

Kruskal's MST algorithm

7

16
45

6 8

11

15

14

17

10

13

3

12

29

18

Consider the edges in increasing order of weight,
add an edge iff it does not cause a cycle
[Animation taken from Prof. Welch’s lecture notes]

Kruskal's MST algorithm

7

16
45

6 8

11

15

14

17

10

13

3

12

29

18

Consider the edges in increasing order of weight,
add an edge iff it does not cause a cycle
[Animation taken from Prof. Welch’s lecture notes]

Kruskal's MST algorithm

7

16
45

6 8

11

15

14

17

10

13

3

12

29

18

Consider the edges in increasing order of weight,
add an edge iff it does not cause a cycle
[Animation taken from Prof. Welch’s lecture notes]

Kruskal's MST algorithm

7

16
45

6 8

11

15

14

17

10

13

3

12

29

18

Conclusion

Matroids characterize a group of problems for which the greedy
algorithm yields an optimal solution.

Kruskals minimum spanning tree algorithm fits nicely into this
framework.

