
Problem Set 2

Due dates: Electronic submission of .pdf files of this homework
is due on 2/10/2016 before 3:50pm on ecampus, a signed paper
copy of the pdf file is due on 2/10/2016 at the beginning of class.

Name: (put your name here)

Resources. (All people, books, articles, web pages, etc. that have been con-
sulted when producing your answers to this homework)

On my honor, as an Aggie, I have neither given nor received any unauthorized
aid on any portion of the academic work included in this assignment. Further-
more, I have disclosed all resources (people, books, web sites, etc.) that have
been used to prepare this homework.

Signature:

1



As always: Watch posted videos before the next class.

Problem 1 (15 points). Consider the following code to find the second largest
element:

largest := numbers[0];

secondLargest := null

for i=1 to numbers.length-1 do

number := numbers[i];

if number > largest then

secondLargest := largest;

largest := number;

else

if number > secondLargest then

secondLargest := number;

end;

end;

end;

This code was provided by someone in response to a question on stackover-
flow. (a) How many comparisons does this code make, assuming that numbers

contains n elements. (b) Give a small example which shows that this is not
optimal.

Solution.

Problem 2 (15 points). Describe an algorithm in pseudocode that finds the
2nd largest element in the least possible number of steps. Explain why your
algorithm is correct and why it finds the 2nd largest element in the least possible
number of steps.

Solution.

Problem 3. (20 points) Give a (2n−1) lower bound on the number of compar-
isons needed to merge two sorted lists (a1, a2, . . . , an) and (b1, b2, . . . , bn) with
a1 < a2 < · · · < an and b1 < b2 < · · · < bn. [Hint: Use an adversarial method.
Why can’t you have in general 2n− 2 or fewer comparisons?]

Solution.

Problem 4. (15 points) Solve Exercise 8.1-4 on page 194 of our textbook.

Solution.

Problem 5. (15 points) Consider the task of searching a sorted array a[1..n]

for a given element w. Show that any algorithm that accesses the array only
via Perl-style three-way comparisons using the <=> operator (where a <=> b
determines whether a < b, a = b, or a > b), must take Ω(logn) steps.

Solution.

2



Problem 6. (20 points) Suppose that you are given a sorted list L of n distinct
elements

x1 < x2 < · · · < xn.

You want to search the list for an element y and return ⊥ if y is not an element
of L, and otherwise return the index i if y = xi. You can only access the list
using a search procedure search(i,j,k,y) that returns one of the following
answers: (i) y < xi, (ii) y = xi, (iii) xi < y < xj , (iv) y = xj , (v) xj < y < xk,
(vi) y = xk, (vii) y > xk. Here it is assumed that i<j<k. Use a decision tree
to prove a lower bound on the number of calls to search that are required to
correctly solve the problem.

Checklist:
2 Did you add your name?
2 Did you disclose all resources that you have used?

(This includes all people, books, websites, etc. that you have consulted)
2 Did you sign that you followed the Aggie honor code?
2 Did you solve all problems?
2 Did you submit the pdf file of your homework?
2 Did you submit (b) a hardcopy of the pdf file in class?

3


