Algorithmic Problems

Andreas Klappenecker

Iterated Functions

Let S be a finite set and $f: S \rightarrow S$ a function mapping S into itself.
Form a sequence by choosing an initial value x_{0} in S and then

$$
x_{i+1}=f\left(x_{i}\right)
$$

for all $i>=0$. In other words, $x_{k}=f^{k}\left(x_{0}\right)$.
Show that there must exist indices s and L such that

$$
x_{s}=x_{s+L}=f^{L}\left(x_{s}\right)
$$

Proof

Let S have n elements. By the pigeonhole principle, the $n+1$ values $x_{0}, f\left(x_{0}\right), f\left(f\left(x_{0}\right)\right), f\left(f\left(f\left(x_{0}\right)\right)\right), \ldots, f^{n}\left(x_{0}\right)$
must have at least one repeated value. Thus, there exist indices s and $S+L, L>0$, such that

$$
x_{s}=f^{s}\left(x_{0}\right)=f^{s+L}\left(x_{0}\right)=f^{L}\left(x_{s}\right) .
$$

When L is minimal, then we call it the cycle length.

Problem

Given a start value x_{0} and a function $f: S \rightarrow S$,
write an algorithm to find the first s and minimal L such that

$$
x_{s}=f^{s}\left(x_{0}\right)=f^{s+L}\left(x_{0}\right) \text {. }
$$

In other words, find the start s of the cycle and it's cycle length L .

The Hare and the Tortoise

Show that there must exist an index n such that

$$
x_{n}=x_{2 n}
$$

Proof

In the sequence, we get some repeated values $x_{n}=x_{m}$ with $m>n$ when $m-n$ is a multiple of the cycle length L and both indices not smaller than s .

Thus, we have $x_{2 n}=x_{n}$ for every index $n>=s$ such that n is a multiple of the cycle length L.

How large is n?

After s steps, the tortoise enters the cycle. The faster hare is already in the cycle.

Then after less than $s+L$ steps total, the hare and the tortoise meet.

Indeed, the interval $[s, s+L-1]$ contains L different numbers, and one must be a multiple of L. So $s<=n=m L<s+L$, which yields $m=\lceil\mathrm{s} / \mathrm{L}\rceil$. Therefore, $\mathrm{n}=\mathrm{L}\lceil\mathrm{s} / \mathrm{L}\rceil<=\mathrm{s}+\mathrm{L}$.

Tortoise and Hare

$t=x_{0} ; h=x_{0} ; n=0 ;$
repeat

$$
t=f(t) ; h=f^{2}(h) ; n=n+1 ;
$$

until $t=h$;
return n; // n is a multiple of the cycle length L

Problem

Suppose that we know a multiple n of the cycle length L. How can we find the start s of the cycle and the cycle length L?

Find an algorithm that uses $O(s+L)$ steps.

Floyd's Idea

Let n be such that $x_{2 n}=x_{n}$.
Find first k such that $f^{k}\left(x_{0}\right)=f^{k}\left(x_{n}\right)$, or $x_{k}=x_{k+n}$.
Then we must have $s=k$, so we have found the start of the cycle.
Search for the first index $k>=s$ such that $x_{k}=x_{s}$. Then $L=k-s$ is the length of the cycle.

Time and Space Estimates

Floyd's cycle detection algorithm uses just two variables, so O(1) memory usage!

Finding n can be done in less than $s+L$ steps.
Finding the start of the cycle uses additionally s steps.
At most L additional steps are needed to find the cycle length L.
Total: O(s+L) steps.

Applications

- Test the quality of pseudo-random number generators.
- Test whether a linked list has a loop
- Pollard's rho algorithm for factoring integers

Birthday Paradox and Factoring

Suppose that a number N is the product of two distinct prime p and q, so $N=p q$.

Pick k numbers x_{i} uniformly at random from the range $[2, N-1]$.
If $\operatorname{gcd}\left(x_{i}-x_{j}, n\right)>1$, then we have found a factor.
Problem: We need to store $k>N^{1 / 4}$ numbers.

Pollard's Rho Algorithm

```
Let f(x)= x
a = 2;
b = 2;
while ( b != a ){
    a = f(a);
    b = f(f(b));
    p = GCD( b - a ,N);
    if ( p > 1)
        return "Found factor: p";
}
return "Fail"
```

