
Algorithmic Problems 2
Andreas Klappenecker

[based on a lecture by Avrim Blum]

Motivation
Suppose that you have a homework assignment consisting of seven
parts A, B, …, G. Each part has a certain value of points and takes
a certain time to complete. For example,

!

!

!

If you have 15 hours, which parts would you do?

11.5. EXAMPLE #2: THE KNAPSACK PROBLEM 62

return result;

}

All we have done is saved our work in line (**) and made sure that we only embark on new recursive
calls if we haven’t already computed the answer in line (*).

In this memoized version, our running time is now just O(mn). One easy way to see this is as
follows. First, notice that we reach line (**) at most mn times (at most once for any given value
of the parameters). This means we make at most 2mn recursive calls total (at most two calls for
each time we reach that line). Any given call of LCS involves only O(1) work (performing some
equality checks and taking a max or adding 1), so overall the total running time is O(mn).

Comparing bottom-up and top-down dynamic programming, both do almost the same work. The
top-down (memoized) version pays a penalty in recursion overhead, but can potentially be faster
than the bottom-up version in situations where some of the subproblems never get examined at
all. These differences, however, are minor: you should use whichever version is easiest and most
intuitive for you for the given problem at hand.

More about LCS: Discussion and Extensions. An equivalent problem to LCS is the “mini-
mum edit distance” problem, where the legal operations are insert and delete. (E.g., the unix “diff”
command, where S and T are files, and the elements of S and T are lines of text). The minimum
edit distance to transform S into T is achieved by doing |S|−LCS(S, T) deletes and |T |−LCS(S, T)
inserts.

In computational biology applications, often one has a more general notion of sequence alignment.
Many of these different problems all allow for basically the same kind of Dynamic Programming
solution.

11.5 Example #2: The Knapsack Problem

Imagine you have a homework assignment with different parts labeled A through G. Each part has
a “value” (in points) and a “size” (time in hours to complete). For example, say the values and
times for our assignment are:

A B C D E F G
value 7 9 5 12 14 6 12
time 3 4 2 6 7 3 5

Say you have a total of 15 hours: which parts should you do? If there was partial credit that was
proportional to the amount of work done (e.g., one hour spent on problem C earns you 2.5 points)
then the best approach is to work on problems in order of points/hour (a greedy strategy). But,
what if there is no partial credit? In that case, which parts should you do, and what is the best
total value possible?2

The above is an instance of the knapsack problem, formally defined as follows:

2Answer: In this case, the optimal strategy is to do parts A, B, F, and G for a total of 34 points. Notice that this
doesn’t include doing part C which has the most points/hour!

Knapsack

In the knapsack problem, we are given a set of n items, where
each item i is specified by a size si and a value vi. You are also
given a upper bound S on the total of the sizes (namely, the size
of the knapsack).

Goal: Find a subset of the items of maximum total value such that
the sum of their sizes is at most S.

Problem

Find an (efficient) algorithm to solve the knapsack problem.

[Hint: Write a recursive procedure Value(n, S) that will select the
maximum value among the n items. Assume that the values are
stored in an array v[1..n] and the sizes in a array s[1..n].]

Hint

Either include the last element or don’t.

Recursive Algorithm

11.6. EXAMPLE #3: MATRIX PRODUCT PARENTHESIZATION 63

Definition 11.2 In the knapsack problem we are given a set of n items, where each item i is
specified by a size si and a value vi. We are also given a size bound S (the size of our knapsack).
The goal is to find the subset of items of maximum total value such that sum of their sizes is at
most S (they all fit into the knapsack).

We can solve the knapsack problem in exponential time by trying all possible subsets. With
Dynamic Programming, we can reduce this to time O(nS).

Let’s do this top down by starting with a simple recursive solution and then trying to memoize
it. Let’s start by just computing the best possible total value, and we afterwards can see how to
actually extract the items needed.

// Recursive algorithm: either we use the last element or we don’t.

Value(n,S) // S = space left, n = # items still to choose from

{

if (n == 0) return 0;

if (s_n > S) result = Value(n-1,S); // can’t use nth item

else result = max{v_n + Value(n-1, S-s_n), Value(n-1, S)};

return result;

}

Right now, this takes exponential time. But, notice that there are only O(nS) different pairs of
values the arguments can possibly take on, so this is perfect for memoizing. As with the LCS
problem, let us initialize a 2-d array arr[i][j] to “unknown” for all i,j.

Value(n,S)

{

if (n == 0) return 0;

if (arr[n][S] != unknown) return arr[n][S]; // <- added this

if (s_n > S) result = Value(n-1,S);

else result = max{v_n + Value(n-1, S-s_n), Value(n-1, S)};

arr[n][S] = result; // <- and this

return result;

}

Since any given pair of arguments to Value can pass through the array check only once, and in
doing so produces at most two recursive calls, we have at most 2n(S + 1) recursive calls total, and
the total time is O(nS).

So far we have only discussed computing the value of the optimal solution. How can we get
the items? As usual for Dynamic Programming, we can do this by just working backwards: if
arr[n][S] = arr[n-1][S] then we didn’t use the nth item so we just recursively work backwards
from arr[n-1][S]. Otherwise, we did use that item, so we just output the nth item and recursively
work backwards from arr[n-1][S-s n]. One can also do bottom-up Dynamic Programming.

11.6 Example #3: Matrix product parenthesization

Our final example for Dynamic Programming is the matrix product parenthesization problem.

We need exponential time, since at each iteration, we have two
recursive calls in the worst (but normal) case.

There are at most O(nS) values!

Now speed up the recursive algorithm! Which algorithm design
method can you use?

Dynamic Programming (Memoization)

11.6. EXAMPLE #3: MATRIX PRODUCT PARENTHESIZATION 63

Definition 11.2 In the knapsack problem we are given a set of n items, where each item i is
specified by a size si and a value vi. We are also given a size bound S (the size of our knapsack).
The goal is to find the subset of items of maximum total value such that sum of their sizes is at
most S (they all fit into the knapsack).

We can solve the knapsack problem in exponential time by trying all possible subsets. With
Dynamic Programming, we can reduce this to time O(nS).

Let’s do this top down by starting with a simple recursive solution and then trying to memoize
it. Let’s start by just computing the best possible total value, and we afterwards can see how to
actually extract the items needed.

// Recursive algorithm: either we use the last element or we don’t.

Value(n,S) // S = space left, n = # items still to choose from

{

if (n == 0) return 0;

if (s_n > S) result = Value(n-1,S); // can’t use nth item

else result = max{v_n + Value(n-1, S-s_n), Value(n-1, S)};

return result;

}

Right now, this takes exponential time. But, notice that there are only O(nS) different pairs of
values the arguments can possibly take on, so this is perfect for memoizing. As with the LCS
problem, let us initialize a 2-d array arr[i][j] to “unknown” for all i,j.

Value(n,S)

{

if (n == 0) return 0;

if (arr[n][S] != unknown) return arr[n][S]; // <- added this

if (s_n > S) result = Value(n-1,S);

else result = max{v_n + Value(n-1, S-s_n), Value(n-1, S)};

arr[n][S] = result; // <- and this

return result;

}

Since any given pair of arguments to Value can pass through the array check only once, and in
doing so produces at most two recursive calls, we have at most 2n(S + 1) recursive calls total, and
the total time is O(nS).

So far we have only discussed computing the value of the optimal solution. How can we get
the items? As usual for Dynamic Programming, we can do this by just working backwards: if
arr[n][S] = arr[n-1][S] then we didn’t use the nth item so we just recursively work backwards
from arr[n-1][S]. Otherwise, we did use that item, so we just output the nth item and recursively
work backwards from arr[n-1][S-s n]. One can also do bottom-up Dynamic Programming.

11.6 Example #3: Matrix product parenthesization

Our final example for Dynamic Programming is the matrix product parenthesization problem.

Are We Done Yet?

How can you get the actual items that led to the solution?

The knapsack decision problem (can we find items with value of
value >= v without exceeding the size S?) is NP complete.

Is this a contradiction?

