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Motivation

In asymptotic analysis, our goal is to compare a function f pnq with
some simple function gpnq that allows us to understand the order of
growth of f pnq as n approaches infinity.

We discuss asymptotic equality „, asymptotic tightness Θ,
asymptotic upper bounds O and o, and asymptotic lower bounds Ω
and ω.

First, let us recall the notion of a limit.
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Limit

Given a function f : N0 Ñ R, we say that f converges to the limit
L P R as n Ñ 8, and write

lim
nÑ8

f pnq “ L,

if and only if for each ε ą 0 there exists an nε P N0 such that

|f pnq ´ L| ă ε

holds for all n ě nε.
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1
2´ ε
2` ε
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Limit

Given a function f : N0 Ñ R, we say that f tends to 8 as n Ñ 8,
and write

lim
nÑ8

f pnq “ 8,

if and only if for each real number B there exists an nB P N0 such
that f pnq ą B for all n ě nB .
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Squeeze Theorem

Proposition

Suppose that we are given functions f , g , h : N0 Ñ R such that
there exists a positive integer n0 such that for all n ě n0, the
inequality chain

f pnq ď gpnq ď hpnq

holds, and
lim
nÑ8

f pnq “ L “ lim
nÑ8

hpnq.

Then limnÑ8 gpnq exists and has the same limit

lim
nÑ8

gpnq “ L.
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Asymptotic Equality

Let f and g be functions from the set of natural numbers to the set
of real numbers. We write f „ g and say that f is asymptotically
equal to g if and only if

lim
nÑ8

f pnq

gpnq
“ 1

holds.
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Asymptotic Equality

By definition of the limit this means that for each ε ą 0 there exists
a natural number nε such that

ˇ

ˇ

ˇ

ˇ

f pnq

gpnq
´ 1

ˇ

ˇ

ˇ

ˇ

ă ε (1)

holds for all n ě nε.

One way to interpret the inequality (1) is that two functions f and
g are asymptotically equal if and only if the relative error
pf pnq ´ gpnqq{gpnq between these functions vanishes for large n.
Essentially, this means that the functions f and g have the same
growth for large n.
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Harmonic Number

Proposition

The n-th Harmonic number Hn “ 1` 1
2 ` ¨ ¨ ¨ `

1
n is asymptotically

equal to the natural logarithm ln n,

Hn „ ln n.
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Proof

Since the inequalities lnpn ` 1q ď Hn ď 1` ln n hold, dividing by
ln n and taking the limit yields for the logarithmic terms

lim
nÑ8

lnpn ` 1q

ln n
“ lim

nÑ8

n

n ` 1
“ 1 and lim

nÑ8

1` ln n

ln n
“ 1,

where we used l’Hôpital’s rule in the calculation of the first limit.
Thus, it follows from the squeeze theorem for limits that

lim
nÑ8

Hn

ln n
“ 1,

which proves that Hn „ ln n. In other words, the Harmonic
numbers grow like the natural logarithm for large n.
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Stirling’s Approximation to n!

Example

The Stirling approximation yields

n! „
?

2πn
´n

e

¯n
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One advantage of the asymptotic equality „ is that the expression
can be simplified quite a bit. The next proposition illustrates this in
the case of polynomials.

Proposition

Let ppxq “
řm

k“0 akx
k be a nonzero polynomial of degree m with

real coefficients. Then ppxq is asymptotically equal to its leading
term,

ppxq „ amx
m.
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Criterion

Proposition

Let c be a positive real number. Let f be a continuously
differentiable function from the set of positive real numbers to the
set of real numbers such that its derivative f 1 is monotonic,
nonzero, and satisfies

lim
nÑ8

f 1pn ` cq{f 1pnq “ 1.

Then
f pn ` cq ´ f pnq „ cf 1pnq.
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Proof

By the mean value theorem of calculus, there exists a real number θ in the range
0 ď θ ď c such that

f pn ` cq ´ f pnq “ pn ` c ´ nqf 1
pn ` θq “ cf 1

pn ` θq.

If f 1 is monotonically increasing (or monotonically decreasing), then

cf 1
pnq ď

pěq

f pn ` cq ´ f pnq ď
pěq

cf 1
pn ` cq.

Dividing by cf 1pnq yields by assumption

lim
nÑ8

cf 1pnq

cf 1pnq
“ 1 and lim

nÑ8

cf 1pn ` cq

cf 1pnq
“ 1.

Therefore, by the squeeze theorem for limits, we have

lim
nÑ8

f pn ` 1q ´ f pnq

cf 1pnq
“ 1,

which proves our claim.
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Example

Let c be a positive constant. Then

?
n ` c ´

?
n „

c

2
?
n
.

Indeed, if we set f pxq “
?
x , then f is a continuously differentiable

function on the positive real numbers. Its derivative
f 1pxq “ 1{p2

?
xq is nonzero, monotonically decreasing, and satisfies

limnÑ8 f pn ` cq{f pnq “ 1. The claim follows from the previous
proposition.
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