Asymptotic Analysis 1: Limits and Asymptotic Equality

Andreas Klappenecker and Hyunyoung Lee

Texas A&M University

In asymptotic analysis, our goal is to compare a function f(n) with some simple function g(n) that allows us to understand the order of growth of f(n) as n approaches infinity. In asymptotic analysis, our goal is to compare a function f(n) with some simple function g(n) that allows us to understand the order of growth of f(n) as n approaches infinity.

We discuss asymptotic equality \sim , asymptotic tightness Θ , asymptotic upper bounds O and o, and asymptotic lower bounds Ω and ω .

In asymptotic analysis, our goal is to compare a function f(n) with some simple function g(n) that allows us to understand the order of growth of f(n) as n approaches infinity.

We discuss asymptotic equality \sim , asymptotic tightness Θ , asymptotic upper bounds O and o, and asymptotic lower bounds Ω and ω .

First, let us recall the notion of a limit.

Limit

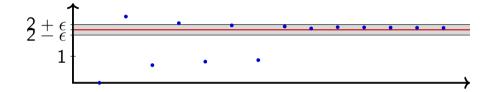
Given a function $f : \mathbf{N}_0 \to \mathbf{R}$, we say that f converges to the limit $L \in \mathbf{R}$ as $n \to \infty$, and write

$$\lim_{n\to\infty}f(n)=L,$$

if and only if for each $\epsilon > 0$ there exists an $n_{\epsilon} \in \mathbf{N}_0$ such that

$$|f(n) - L| < \epsilon$$

holds for all $n \ge n_{\epsilon}$.



Given a function $f: \mathbb{N}_0 \to \mathbb{R}$, we say that f tends to ∞ as $n \to \infty$, and write

 $\lim_{n\to\infty}f(n)=\infty,$

if and only if for each real number B there exists an $n_B \in \mathbf{N}_0$ such that f(n) > B for all $n \ge n_B$.

Proposition

Suppose that we are given functions $f, g, h : \mathbf{N}_0 \to \mathbf{R}$ such that there exists a positive integer n_0 such that for all $n \ge n_0$, the inequality chain

 $f(n) \leq g(n) \leq h(n)$

holds, and

$$\lim_{n\to\infty}f(n)=L=\lim_{n\to\infty}h(n).$$

Then $\lim_{n\to\infty} g(n)$ exists and has the same limit

$$\lim_{n\to\infty}g(n)=L.$$

Let f and g be functions from the set of natural numbers to the set of real numbers. We write $f \sim g$ and say that f is **asymptotically** equal to g if and only if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=1$$

holds.

Asymptotic Equality

By definition of the limit this means that for each $\epsilon > 0$ there exists a natural number n_{ϵ} such that

$$\left|\frac{f(n)}{g(n)} - 1\right| < \epsilon$$

holds for all $n \ge n_{\epsilon}$.

(1)

Asymptotic Equality

By definition of the limit this means that for each $\epsilon > 0$ there exists a natural number n_{ϵ} such that

$$\left| \frac{f(n)}{g(n)} - 1 \right| < \epsilon$$
 (1)

holds for all $n \ge n_{\epsilon}$.

One way to interpret the inequality (1) is that two functions f and g are asymptotically equal if and only if the relative error (f(n) - g(n))/g(n) between these functions vanishes for large n. Essentially, this means that the functions f and g have the same growth for large n.

Proposition

The n-th Harmonic number $H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$ is asymptotically equal to the natural logarithm ln n,

$$H_n \sim \ln n$$
.

Since the inequalities $\ln(n+1) \leq H_n \leq 1 + \ln n$ hold, dividing by $\ln n$ and taking the limit yields for the logarithmic terms

$$\lim_{n \to \infty} \frac{\ln(n+1)}{\ln n} = \lim_{n \to \infty} \frac{n}{n+1} = 1 \quad \text{and} \quad \lim_{n \to \infty} \frac{1+\ln n}{\ln n} = 1,$$

where we used l'Hôpital's rule in the calculation of the first limit. Thus, it follows from the squeeze theorem for limits that

$$\lim_{n\to\infty}\frac{H_n}{\ln n}=1,$$

which proves that $H_n \sim \ln n$. In other words, the Harmonic numbers grow like the natural logarithm for large n.

Example

The Stirling approximation yields

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

One advantage of the asymptotic equality \sim is that the expression can be simplified quite a bit. The next proposition illustrates this in the case of polynomials.

Proposition

Let $p(x) = \sum_{k=0}^{m} a_k x^k$ be a nonzero polynomial of degree m with real coefficients. Then p(x) is asymptotically equal to its leading term,

 $p(x) \sim a_m x^m$.

Criterion

Proposition

Let c be a positive real number. Let f be a continuously differentiable function from the set of positive real numbers to the set of real numbers such that its derivative f' is monotonic, nonzero, and satisfies

$$\lim_{n\to\infty} f'(n+c)/f'(n) = 1.$$

Then

$$f(n+c)-f(n)\sim cf'(n).$$

By the mean value theorem of calculus, there exists a real number θ in the range $0\leqslant\theta\leqslant c$ such that

$$f(n+c) - f(n) = (n+c-n)f'(n+\theta) = cf'(n+\theta).$$

By the mean value theorem of calculus, there exists a real number θ in the range $0\leqslant\theta\leqslant c$ such that

$$f(n+c) - f(n) = (n+c-n)f'(n+\theta) = cf'(n+\theta).$$

If f' is monotonically increasing (or monotonically decreasing), then

$$cf'(n) \underset{(\geqslant)}{\leqslant} f(n+c) - f(n) \underset{(\geqslant)}{\leqslant} cf'(n+c).$$

By the mean value theorem of calculus, there exists a real number θ in the range $0\leqslant\theta\leqslant c$ such that

$$f(n+c) - f(n) = (n+c-n)f'(n+\theta) = cf'(n+\theta).$$

If f' is monotonically increasing (or monotonically decreasing), then

$$cf'(n) \underset{(\geqslant)}{\leqslant} f(n+c) - f(n) \underset{(\geqslant)}{\leqslant} cf'(n+c).$$

Dividing by cf'(n) yields by assumption

$$\lim_{n \to \infty} \frac{cf'(n)}{cf'(n)} = 1 \quad \text{and} \quad \lim_{n \to \infty} \frac{cf'(n+c)}{cf'(n)} = 1.$$

By the mean value theorem of calculus, there exists a real number θ in the range $0\leqslant\theta\leqslant c$ such that

$$f(n+c) - f(n) = (n+c-n)f'(n+\theta) = cf'(n+\theta).$$

If f' is monotonically increasing (or monotonically decreasing), then

$$cf'(n) \underset{(\geqslant)}{\leqslant} f(n+c) - f(n) \underset{(\geqslant)}{\leqslant} cf'(n+c).$$

Dividing by cf'(n) yields by assumption

$$\lim_{n\to\infty}\frac{cf'(n)}{cf'(n)}=1 \quad \text{and} \quad \lim_{n\to\infty}\frac{cf'(n+c)}{cf'(n)}=1.$$

Therefore, by the squeeze theorem for limits, we have

$$\lim_{n\to\infty}\frac{f(n+1)-f(n)}{cf'(n)}=1,$$

which proves our claim.

Example

Let c be a positive constant. Then

$$\sqrt{n+c}-\sqrt{n}\sim rac{c}{2\sqrt{n}}.$$

Indeed, if we set $f(x) = \sqrt{x}$, then f is a continuously differentiable function on the positive real numbers. Its derivative $f'(x) = 1/(2\sqrt{x})$ is nonzero, monotonically decreasing, and satisfies $\lim_{n\to\infty} f(n+c)/f(n) = 1$. The claim follows from the previous proposition.