Asymptotic Analysis 2: Asymptotically Tight Bounds

Andreas Klappenecker and Hyunyoung Lee

Texas A\&M University

The asymptotic equality is often a bit too strict. Sometimes it is desirable to relax the constraints and consider (a) the growth up to a constant factor and (b) without the need for the existence of a limit.

Let f and g denote functions from the natural numbers to the real numbers. We say that f and g have the same order of growth and write $f=g$ or $f \in \Theta(g)$ if and only if there exist positive real constants c and C and a natural number n_{0} such that

$$
c|g(n)| \leqslant|f(n)| \leqslant C|g(n)|
$$

holds for all $n \geqslant n_{0}$.

The notation $f \asymp g$ goes back to Hardy and is popular in mathematics. Computer scientists like to express this in the form $f \in \Theta(g)$, where

$$
\Theta(g)=\{f: \mathbf{N} \rightarrow \mathbf{R} \mid f=g\}
$$

is the set of functions that have the same order of growth as g. If $f \in \Theta(g)$ or $f=g$, then we also say that g is an asymptotically tight bound for f.

Proposition

Let f and g be functions from the set of natural numbers to the set of real numbers. If g is a positive function and the limit

$$
d=\lim _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|}
$$

exists and is a nonzero real number d, then $f \in \Theta(g)$.

It follows from the definition of the limit that for each $\epsilon>0$ there exists a natural number n_{ϵ} such that

$$
d-\epsilon \leqslant \frac{|f(n)|}{|g(n)|} \leqslant d+\epsilon
$$

for all $n \geqslant n_{\epsilon}$. In other words, for the constants $c=d-\epsilon$ and $C=d+\epsilon$ there exists an n_{ϵ} such that $c|g(n)| \leqslant|f(n)| \leqslant C|g(n)|$ holds for all $n \geqslant n_{\epsilon}$, which proves $f \in \Theta(g)$.

Corollary
If two functions f and g are asymptotically equal, $f \sim g$, then they have the same order of growth, that is, $f=g$.

Example

Let $f(n)=\left(2+(-1)^{n}\right) n^{2}$ and $g(n)=n^{2}$. Then the limit

$$
\lim _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|}
$$

does not exist, as the quotient fluctuates between 3 and 1 , but

$$
|g(n)| \leqslant|f(n)| \leqslant 3|g(n)|
$$

holds for all $n \geqslant 1$; hence, $f \in \Theta(g)$.

We can characterize $f \in \Theta(g)$ using limit superior and limit inferior from calculus. We recall the relevant terminology.

Let f be a function from the set of natural numbers to the set of real numbers. The real number u is an upper accumulation point of f if and only if the following two conditions are met:
U1. For each $\epsilon>0$ there exist infinitely many natural numbers n such that $f(n)>u-\epsilon$,
U2. For each $\epsilon>0$ there exist at most finitely many natural numbers such that $f(n)>u+\epsilon$.
If an upper accumulation point of f exists, then it is unique.

The function f is called bounded above if and only if there exists a real number u such that $f(n) \leqslant u$ holds for all natural numbers n. If f has an upper accumulation point, then it is bounded above.
The limit superior of f is defined as
$\limsup _{n \rightarrow \infty} f(n)= \begin{cases}+\infty & \text { if } f \text { is not bounded above, } \\ u & \text { if the upper accumulation point } u \text { of } f \text { exists, } \\ -\infty & \text { otherwise. }\end{cases}$
Unlike the limit of f, the limit superior of f always exists.

Example

Let $f(n)$ denote the function given by

$$
f(n)= \begin{cases}2+1 / n & \text { if } n \text { is even } \\ 1-1 / n & \text { if } n \text { is odd }\end{cases}
$$

We can conclude that $\limsup f(n)=2$ and $\liminf f(n)=1$.

$$
n \rightarrow \infty
$$

Proposition

Let f be a function from the natural numbers to the real numbers, and g an eventually nonzero function from the natural numbers to the real numbers. Then $f \in \Theta(g)$ if and only if

$$
\liminf _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|}>0 \quad \text { and } \quad \limsup _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|}<\infty
$$

Proof

If $f \in \Theta(g)$, then there exists a positive constants c and C and a natural number n_{0} such that $c \leqslant|f(n)| /|g(n)| \leqslant C$ holds for all $n \geqslant n_{0}$. This implies that

$$
\liminf _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|} \geqslant c>0 \quad \text { and } \quad \limsup _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|} \leqslant c<\infty
$$

hold.

Proof

If $f \in \Theta(g)$, then there exists a positive constants c and C and a natural number n_{0} such that $c \leqslant|f(n)| /|g(n)| \leqslant C$ holds for all $n \geqslant n_{0}$. This implies that

$$
\liminf _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|} \geqslant c>0 \quad \text { and } \quad \limsup _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|} \leqslant C<\infty
$$

hold.
Conversely, suppose that f and g are functions satisfying

$$
c:=\liminf _{n \rightarrow \infty}|f(n)| /|g(n)|>0 \quad \text { and } \quad C:=\limsup _{n \rightarrow \infty}|f(n)| /|g(n)|<\infty
$$

By definition of the limit superior and inferior, for any ϵ in the range $0<\epsilon<c$ there exists a natural number n_{0} such that

$$
0<c-\epsilon \leqslant \frac{|f(n)|}{|g(n)|} \leqslant(C+\epsilon)
$$

holds for all $n \geqslant n_{0}$. Multiplying these inequalities by $|g(n)|$ shows that $f \in \Theta(g)$ holds.

