Asymptotic Analysis 2: Asymptotically Tight Bounds

Andreas Klappenecker and Hyunyoung Lee

Texas A&M University

The asymptotic equality is often a bit too strict. Sometimes it is desirable to relax the constraints and consider(a) the growth up to a constant factor and(b) without the need for the existence of a limit.

Let f and g denote functions from the natural numbers to the real numbers. We say that f and g have the **same order of growth** and write $f \simeq g$ or $f \in \Theta(g)$ if and only if there exist positive real constants c and C and a natural number n_0 such that

 $c|g(n)| \leq |f(n)| \leq C|g(n)|$

holds for all $n \ge n_0$.

The notation $f \simeq g$ goes back to Hardy and is popular in mathematics. Computer scientists like to express this in the form $f \in \Theta(g)$, where

$$\Theta(g) = \{ f : \mathbf{N} \to \mathbf{R} \, | \, f \asymp g \}$$

is the set of functions that have the same order of growth as g. If $f \in \Theta(g)$ or $f \approx g$, then we also say that g is an **asymptotically tight bound** for f.

Proposition

Let f and g be functions from the set of natural numbers to the set of real numbers. If g is a positive function and the limit

$$d = \lim_{n \to \infty} \frac{|f(n)|}{|g(n)|}$$

exists and is a nonzero real number d, then $f \in \Theta(g)$.

Proof

It follows from the definition of the limit that for each $\epsilon > 0$ there exists a natural number n_{ϵ} such that

$$d - \epsilon \leq \frac{|f(n)|}{|g(n)|} \leq d + \epsilon$$

for all $n \ge n_{\epsilon}$. In other words, for the constants $c = d - \epsilon$ and $C = d + \epsilon$ there exists an n_{ϵ} such that $c|g(n)| \le |f(n)| \le C|g(n)|$ holds for all $n \ge n_{\epsilon}$, which proves $f \in \Theta(g)$.

Corollary

If two functions f and g are asymptotically equal, $f \sim g$, then they have the same order of growth, that is, $f \approx g$.

Example

Let
$$f(n) = (2 + (-1)^n)n^2$$
 and $g(n) = n^2$. Then the limit
$$\lim_{n \to \infty} \frac{|f(n)|}{|g(n)|}$$

does not exist, as the quotient fluctuates between 3 and 1, but

 $|g(n)| \leq |f(n)| \leq 3|g(n)|$

holds for all $n \ge 1$; hence, $f \in \Theta(g)$.

We can characterize $f \in \Theta(g)$ using limit superior and limit inferior from calculus. We recall the relevant terminology.

Let f be a function from the set of natural numbers to the set of real numbers. The real number u is an **upper accumulation point** of f if and only if the following two conditions are met: **U1.** For each $\epsilon > 0$ there exist infinitely many natural numbers nsuch that $f(n) > u - \epsilon$,

U2. For each $\epsilon > 0$ there exist at most finitely many natural numbers such that $f(n) > u + \epsilon$.

If an upper accumulation point of f exists, then it is unique.

The function f is called **bounded above** if and only if there exists a real number u such that $f(n) \le u$ holds for all natural numbers n. If f has an upper accumulation point, then it is bounded above. The **limit superior** of f is defined as

 $\limsup_{n \to \infty} f(n) = \begin{cases} +\infty & \text{if } f \text{ is not bounded above,} \\ u & \text{if the upper accumulation point } u \text{ of } f \text{ exists,} \\ -\infty & \text{otherwise.} \end{cases}$

Unlike the limit of f, the limit superior of f always exists.

Example

Let f(n) denote the function given by

$$f(n) = egin{cases} 2+1/n & ext{if } n ext{ is even} \ 1-1/n & ext{if } n ext{ is odd} \end{cases}$$

Proposition

Let f be a function from the natural numbers to the real numbers, and g an eventually nonzero function from the natural numbers to the real numbers. Then $f \in \Theta(g)$ if and only if

$$\liminf_{n \to \infty} \frac{|f(n)|}{|g(n)|} > 0 \quad and \quad \limsup_{n \to \infty} \frac{|f(n)|}{|g(n)|} < \infty$$

Proof

If $f \in \Theta(g)$, then there exists a positive constants c and C and a natural number n_0 such that $c \leq |f(n)|/|g(n)| \leq C$ holds for all $n \geq n_0$. This implies that

$$\liminf_{n\to\infty}\frac{|f(n)|}{|g(n)|} \ge c > 0 \quad \text{and} \quad \limsup_{n\to\infty}\frac{|f(n)|}{|g(n)|} \leqslant C < \infty$$

hold.

Proof

If $f \in \Theta(g)$, then there exists a positive constants c and C and a natural number n_0 such that $c \leq |f(n)|/|g(n)| \leq C$ holds for all $n \geq n_0$. This implies that

$$\liminf_{n\to\infty}\frac{|f(n)|}{|g(n)|}\geqslant c>0\quad\text{and}\quad\limsup_{n\to\infty}\frac{|f(n)|}{|g(n)|}\leqslant C<\infty$$

hold.

Conversely, suppose that f and g are functions satisfying

$$c := \liminf_{n \to \infty} |f(n)|/|g(n)| > 0$$
 and $C := \limsup_{n \to \infty} |f(n)|/|g(n)| < \infty$.

By definition of the limit superior and inferior, for any ϵ in the range $0 < \epsilon < c$ there exists a natural number n_0 such that

$$0 < c - \epsilon \leq \frac{|f(n)|}{|g(n)|} \leq (C + \epsilon)$$

holds for all $n \ge n_0$. Multiplying these inequalities by |g(n)| shows that $f \in \Theta(g)$ holds.