Asymptotic Analysis 3: Asymptotic Upper Bounds

Andreas Klappenecker and Hyunyoung Lee

Texas A&M University

Let f and g be functions from the natural numbers to the real numbers. We say that g is an **asymptotic upper bound** for f and write $f \in O(g)$ if and only if there exists a positive real constant Cand a natural number n_0 such that

 $|f(n)| \leq C|g(n)|$

holds for all $n \ge n_0$.

Proposition

Let f be a function from the natural numbers to the real numbers, and g an eventually nonzero function from the natural numbers to the real numbers. Then $f(n) \in O(g(n))$ if and only if

$$\limsup_{n\to\infty}\frac{|f(n)|}{|g(n)|}<\infty.$$

Corollary

Let f and g be functions from the set of natural numbers to the of real numbers. If the limit

$$\lim_{n\to\infty}\frac{|f(n)|}{|g(n)|}$$

exists and is finite, then $f \in O(g)$.

We say that g is a **strict asymptotic upper bound** for f and write $f \in o(g)$ if and only if for every $\epsilon > 0$ there exists a natural number n_{ϵ} such that

 $|f(n)| \leq \epsilon |g(n)|$

holds for all $n \ge n_{\epsilon}$. By definition, $f \in o(g)$ implies that $f \in O(g)$.

Proposition

Let f and g be functions from the set of natural numbers to the set of real numbers such that g is eventually nonzero. Then $f \in o(g)$ if and only if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \tag{1}$$

holds.

Proof

Suppose that (1) holds. By definition of the limit, this means that for any $\epsilon > 0$ there exists a natural number n_{ϵ} such that

$$\left|\frac{f(n)}{g(n)}\right| < \epsilon$$

holds for all $n \ge n_{\epsilon}$. This is equivalent to the condition that for each $\epsilon > 0$ there exists an n_{ϵ} such that

 $|f(n)| \leq \epsilon |g(n)|$

holds for all $n \ge n_{\epsilon}$. In other words, (1) is equivalent to $f \in o(g)$.

Corollary

Let f and g be functions from the set of real natural numbers to the set of real numbers. Suppose that f = o(g). Then

$$g+f=O(g).$$

Example Since $n^{1000} + n^2 + 1 \in o(\exp(n))$, we have $\exp(n) + n^{1000} + n^2 + 1 \in O(\exp(n)).$

Example

Recall that the Harmonic number satisfies

$$H_n = \ln n + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + \frac{1}{120n^4} - E(n),$$

where γ is Euler's constant $\gamma \approx 0.5772156649$, and the value of the error term E(n) is in the range $0 < E(n) < 1/(252n^6)$. It follows that

$$H_n = \log n + \gamma + O\left(\frac{1}{n}\right).$$

Constants

If c is a nonzero constant, then

$$cO(f(n)) = O(f(n)),$$
 (2)
 $O(cf(n)) = O(f(n)).$ (3)

Idempotency

The Big Oh operator is idempotent, meaning that

$$O(O(f(n))) = O(f(n)).$$
(4)

Multiplications

The multiplication of Big Oh expressions follows the rules

$$O(f(n))O(g(n)) = O(f(n)g(n)),$$
 (5)
 $O(f(n)g(n)) = f(n)O(g(n)).$ (6)

Absorbtion.

We can simplify Big Oh expressions using the rule

$$O(f(n)) + O(g(n)) = O(g(n))$$
 provided that $f(n) = O(g(n))$. (7)

Powers

For all positive integers k, we have

$$(f(n) + g(n))^k = O((f(n))^k) + O((g(n))^k).$$
 (8)

Linear Combinations

If
$$f(n) = O(h(n))$$
 and $g(n) = O(h(n))$, then

$$af(n) + bg(n) = O(h(n))$$
 for all $a, b \in \mathbf{C}$.

(9)

Swap

The next rule allows you to swap Big Oh terms.

If
$$f(n) = g(n) + O(h(n))$$
 then $g(n) = f(n) + O(h(n))$. (10)