Asymptotic Analysis 3: Asymptotic Upper Bounds

Andreas Klappenecker and Hyunyoung Lee

Texas A\&M University

Let f and g be functions from the natural numbers to the real numbers. We say that g is an asymptotic upper bound for f and write $f \in O(g)$ if and only if there exists a positive real constant C and a natural number n_{0} such that

$$
|f(n)| \leqslant C|g(n)|
$$

holds for all $n \geqslant n_{0}$.

Proposition

Let f be a function from the natural numbers to the real numbers, and g an eventually nonzero function from the natural numbers to the real numbers. Then $f(n) \in O(g(n))$ if and only if

$$
\limsup _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|}<\infty
$$

Corollary

Let f and g be functions from the set of natural numbers to the of real numbers. If the limit

$$
\lim _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|}
$$

exists and is finite, then $f \in O(g)$.

We say that g is a strict asymptotic upper bound for f and write $f \in O(g)$ if and only if for every $\epsilon>0$ there exists a natural number n_{ϵ} such that

$$
|f(n)| \leqslant \epsilon|g(n)|
$$

holds for all $n \geqslant n_{\epsilon}$. By definition, $f \in O(g)$ implies that $f \in O(g)$.

Proposition

Let f and g be functions from the set of natural numbers to the set of real numbers such that g is eventually nonzero. Then $f \in o(g)$ if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 \tag{1}
\end{equation*}
$$

holds.

Suppose that (1) holds. By definition of the limit, this means that for any $\epsilon>0$ there exists a natural number n_{ϵ} such that

$$
\left|\frac{f(n)}{g(n)}\right|<\epsilon
$$

holds for all $n \geqslant n_{\epsilon}$. This is equivalent to the condition that for each $\epsilon>0$ there exists an n_{ϵ} such that

$$
|f(n)| \leqslant \epsilon|g(n)|
$$

holds for all $n \geqslant n_{\epsilon}$. In other words, (1) is equivalent to $f \in O(g)$.

Corollary

Let f and g be functions from the set of real natural numbers to the set of real numbers. Suppose that $f=o(g)$. Then

$$
g+f=O(g)
$$

Example

Since $n^{1000}+n^{2}+1 \in o(\exp (n))$, we have

$$
\exp (n)+n^{1000}+n^{2}+1 \in O(\exp (n))
$$

Example

Recall that the Harmonic number satisfies

$$
H_{n}=\ln n+\gamma+\frac{1}{2 n}-\frac{1}{12 n^{2}}+\frac{1}{120 n^{4}}-E(n),
$$

where γ is Euler's constant $\gamma \approx 0.5772156649$, and the value of the error term $E(n)$ is in the range $0<E(n)<1 /\left(252 n^{6}\right)$. It follows that

$$
H_{n}=\log n+\gamma+O\left(\frac{1}{n}\right)
$$

Constants

If c is a nonzero constant, then

$$
\begin{align*}
& c O(f(n))=O(f(n)) \tag{2}\\
& O(c f(n))=O(f(n))
\end{align*}
$$

Idempotency
The Big Oh operator is idempotent, meaning that

$$
\begin{equation*}
O(O(f(n))=O(f(n)) \tag{4}
\end{equation*}
$$

Multiplications

The multiplication of Big Oh expressions follows the rules

$$
\begin{align*}
O(f(n)) O(g(n)) & =O(f(n) g(n)) \tag{5}\\
O(f(n) g(n)) & =f(n) O(g(n)) \tag{6}
\end{align*}
$$

Absorbtion.
We can simplify Big Oh expressions using the rule

$$
O(f(n))+O(g(n))=O(g(n)) \text { provided that } f(n)=O(g(n))
$$

Powers

For all positive integers k, we have

$$
\begin{equation*}
(f(n)+g(n))^{k}=O\left((f(n))^{k}\right)+O\left((g(n))^{k}\right) \tag{8}
\end{equation*}
$$

Linear Combinations

$$
\begin{align*}
& \text { If } f(n)=O(h(n)) \text { and } g(n)=O(h(n)) \text {, then } \\
& \qquad a f(n)+b g(n)=O(h(n)) \text { for all } a, b \in \mathbf{C} . \tag{9}
\end{align*}
$$

Swap
The next rule allows you to swap Big Oh terms.

$$
\begin{equation*}
\text { If } f(n)=g(n)+O(h(n)) \text { then } g(n)=f(n)+O(h(n)) \tag{10}
\end{equation*}
$$

