Asymptotic Analysis 4: Asymptotic Lower Bounds

Andreas Klappenecker and Hyunyoung Lee

Texas A\&M University

Let f and g be functions from the set of natural numbers to the set of real numbers. We say that g is an asymptotic lower bound to f and write $f \in \Omega(g)$ if and only if there exists a positive constant c and a natural number n_{0} such that

$$
c|g(n)| \leqslant|f(n)|
$$

holds for all $n \geqslant n_{0}$. This formalizes the notion that $f(n)$ grows at least as fast as a constant multiple of $g(n)$ for large n.

This asymptotic lower bound is related to the asymptotic upper bound in the following way.

Proposition

Let f and g be functions from the set of natural numbers to the set of real numbers. We have $f \in \Omega(g)$ if and only if $g \in O(f)$.

We have $f \in \Omega(g)$ if and only if there exists a positive constant c and a natural number n_{0} such that $c|g(n)| \leqslant|f(n)|$ holds for all $n \geqslant n_{0}$. Dividing both sides by c shows that there exist a positive constant $C=1 / c$ and a natural number n_{0} such that $|g(n)| \leqslant \frac{1}{c}|f(n)|=C|f(n)|$ holds for all $n \geqslant n_{0}$. However, this is nothing but the definition of $g \in O(f)$.

Let f and g be functions from the set of natural numbers to the set of real numbers. We say that g is an strict asymptotic lower bound to f and write $f \in \omega(g)$ if and only if for all positive constants c there exists a natural number n_{0} such that

$$
c|g(n)| \leqslant|f(n)|
$$

holds for all $n \geqslant n_{0}$.

Example

The function n^{2} is in $\omega(n)$, since for a given positive constant c, the inequality $c n=c|n| \leqslant\left|n^{2}\right|=n^{2}$ holds for all natural numbers $n \geqslant c$.

On the other hand, n is not in $\omega(n)$, since there does not exist any natural number n for which $2 n=2|n| \leqslant|n|=n$ holds.

Proposition

Let f and g be functions from the set of natural numbers to the set of real numbers, and assume that g is eventually nonzero. Then we have $f \in \omega(g)$ if and only if

$$
\lim _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|}=\infty .
$$

Proof.

We have $f \in \omega(g)$ if and only if for all positive constants c there exists a natural number n_{0} such that $c \leqslant|f(n)| /|g(n)|$ holds for all $n \geqslant n_{0}$, so $|f(n)| /|g(n)|$ grows without bound. By definition of the limit, this is equivalent to

$$
\lim _{n \rightarrow \infty} \frac{|f(n)|}{|g(n)|}=\infty,
$$

which proves the claim.

