Asymptotic Analysis 4: Asymptotic Lower Bounds

Andreas Klappenecker and Hyunyoung Lee

Texas A&M University

Let f and g be functions from the set of natural numbers to the set of real numbers. We say that g is an **asymptotic lower bound** to f and write $f \in \Omega(g)$ if and only if there exists a positive constant c and a natural number n_0 such that

 $c|g(n)| \leq |f(n)|$

holds for all $n \ge n_0$. This formalizes the notion that f(n) grows at least as fast as a constant multiple of g(n) for large n.

This asymptotic lower bound is related to the asymptotic upper bound in the following way.

Proposition

Let f and g be functions from the set of natural numbers to the set of real numbers. We have $f \in \Omega(g)$ if and only if $g \in O(f)$.

We have $f \in \Omega(g)$ if and only if there exists a positive constant cand a natural number n_0 such that $c|g(n)| \leq |f(n)|$ holds for all $n \geq n_0$. Dividing both sides by c shows that there exist a positive constant C = 1/c and a natural number n_0 such that $|g(n)| \leq \frac{1}{c}|f(n)| = C|f(n)|$ holds for all $n \geq n_0$. However, this is nothing but the definition of $g \in O(f)$. Let f and g be functions from the set of natural numbers to the set of real numbers. We say that g is an **strict asymptotic lower bound** to f and write $f \in \omega(g)$ if and only if for all positive constants c there exists a natural number n_0 such that

 $c|g(n)| \leq |f(n)|$

holds for all $n \ge n_0$.

Example

The function n^2 is in $\omega(n)$, since for a given positive constant c, the inequality $cn = c|n| \le |n^2| = n^2$ holds for all natural numbers $n \ge c$.

On the other hand, *n* is not in $\omega(n)$, since there does not exist any natural number *n* for which $2n = 2|n| \le |n| = n$ holds.

Proposition

Let f and g be functions from the set of natural numbers to the set of real numbers, and assume that g is eventually nonzero. Then we have $f \in \omega(g)$ if and only if

$$\lim_{n\to\infty}\frac{|f(n)|}{|g(n)|}=\infty.$$

Proof.

We have $f \in \omega(g)$ if and only if for all positive constants c there exists a natural number n_0 such that $c \leq |f(n)|/|g(n)|$ holds for all $n \geq n_0$, so |f(n)|/|g(n)| grows without bound. By definition of the limit, this is equivalent to

$$\lim_{n\to\infty}\frac{|f(n)|}{|g(n)|}=\infty,$$

which proves the claim.