
Amortized Analysis of
vector::push_back

Andreas Klappenecker

Vector

In C++, a vector is a sequence of elements that can be accessed by
an index, but - unlike an array - it does not have a fixed size.

vector<int> = v; // start with an empty vector

v.push_back(1); // v = [1] and capacity = 1

v.push_back(2); // v = [1,2] and capacity = 2

v.push_back(3); // v = [1,2,3] and capacity = 4

Simplified C++ Vector
template<class T>

void vector<T>::reserve(int newalloc) {

!
 if(newalloc <= capac) return;

!
 T* p = alloc.allocate(newalloc);

 for(int i=0; i<sz; ++i)

 alloc.construct(&p[i],elem[i]); // copy

 // deallocation omitted ...

 elem = p;

 capac = newalloc;

!
}

!
template<class T>

void vector<T>::push_back(const T& val) {

!
 if (capac == 0) reserve(1);

 else if (sz==capac) reserve(2*capac); // grow

 alloc.construct(&elem[sz], val); // add val at end

 ++sz; // increase size

!
}

Costs
Operation Capacity Cost

push_back(1) 1 1

push_back(2) 2 1 + 1

push_back(3) 4 2 + 1

push_back(4) 4 1

push_back(5) 8 4 + 1

push_back(6) 8 1

push_back(7) 8 1

push_back(8) 8 1

push_back(9) 16 8 + 1 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8

1 2 3 4 5
1 2 3 4
1 2 3
1 2
1

1 2 3 4 5 6
1 2 3 4 5 6 7

Aggregate Analysis
Cost for the i-th push back

ci =

(
1 + 2

k
if i� 1 = 2

k
for some k

1 otherwise

Thus, n push back operations cost

T (n) =
nX

i=1

ci n+

blgncX

i=0

2

i
= n+ 2n� 1 = 3n� 1.

Amortized costs: T (n)/n = (3n� 1)/n < 3.

Accounting Analysis

Suppose we charge an amortized cost of 3.

Adding the value at the end of the vector costs 1,

and 2 are left over to pay for future copy operations.

If the table doubles, the stored credit pays for the move of

an old item (in the lower half of the vector)

the item itself (in the upper half of the vector)

Example

We assume that the lower half of the vector has used up all
stored credit (which is a tiny bit too pessimistic).

!

!

Since the elements in the upper half of the vector can pay for the
move of every element in the lower half, we never go into the red!

1 2 3 4 5 6 7 8
$1 $0 $0 $0 $2 $2 $2 $2

9
$3

Potential Method
We can define a function Φ from the set of vectors to the real
numbers by defining

 Φ(v) = 2*v.size() - v.capacity()

We have

Initially: v.capacity() = 0 and v.size() = 0.

ci’ = 1 + Φi - Φi-1 = 1 + 2 if ith operation doesn’t cause
growth

Potential Method

If the ith operation does cause growth, then

 capaci = 2*capaci-1, szi-1 = capaci-1, szi = capaci-1 + 1

Therefore,

 ci’ = capaci-1+1 + Φi - Φi-1

 = capaci-1+1 +(2*(capaci-1+1)-2*capaci-1) - (2*capaci-1 - capaci-1)

 = 3

Summary

The amortized time of vector::push_back is constant.

References

B. Stroustrup: Programming - Principles and Practice Using C++,
Addison Wesley, 2009.

Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms, 3rd
edition, MIT press, 2009.

