
The Complexity Classes
P and NP

Andreas Klappenecker

[partially based on slides by Professor Welch]

P

Polynomial Time Algorithms
Most of the algorithms we have seen so far run in time
that is upper bounded by a polynomial in the input size

• sorting: O(n2), O(n log n), …

• matrix multiplication: O(n3), O(n log27)

• graph algorithms: O(V+E), O(E log V), …

In fact, the running time of these algorithms are bounded
by small polynomials.

Categorization of Problems

We will consider a computational problem tractable if and
only if it can be solved in polynomial time.

!

!

!

Decision Problems and the class P

A computational problem with yes/no answer is called a decision
problem.

We shall denote by P the class of all decision problems that are
solvable in polynomial time.

Why Polynomial Time?

It is convenient to define decision problems to be tractable if they
belong to the class P, since

- the class P is closed under composition.

- the class P is nearly independent of the computational model.

[Of course, no one will consider a problem requiring an Ω(n100) algorithm
as efficiently solvable. However, it seems that most problems in P that are
interesting in practice can be solved fairly efficiently.]

NP

Efficient Certification

An efficient certifier for a decision problem X is a

polynomial time algorithm that takes two inputs, an putative
instance i of X and a certificate c and returns either yes or no.

there is a polynomial such that for every string i, the string i is
an instance of X if and only if there exists a string c such that c
<= p(|i|) and B(d,c) = yes.

The certifier does not produce a solution to the decision problem X, but
it is verifying that i belongs to X given a correct, short certificate c.

NP

The set of all decision problems that have an efficient
certifier is called NP.

!

!

Sudoku

The problem is given as an n2 x n2 array which is divided
into blocks of n x n squares.

Some array entries are filled with an integer in the
range [1.. n2].

The goal is to complete the array such that each row,
column, and block contains each integer from [1..n2].

Sudoku

Finding the solution might be difficult, but verifying the solution is easy.

The Sudoku decision problem is whether a given Sudoku problem has a
solution.

Hamiltonian Cycle

• A Hamiltonian cycle in an undirected graph is a cycle that visits
every node exactly once.

• Solving a problem: Is there a Hamiltonian cycle in graph G?

• Verifying a candidate solution: Is v0, v1, …, vl a Hamiltonian cycle of
graph G?

Solving vs. Verifying

• Intuitively it seems much harder (more time consuming) in some
cases to solve a problem from scratch than to verify that a
candidate solution actually solves the problem.

• If there are many candidate solutions to check, then even if each
individual one is quick to check, overall it can take a long time

The Class NP

NP is short for nondeterministic polynomial time, since the
decision problem in NP are precisely the problems that can be
solved on a nondeterministic Turing machine in polynomial
time.

NP does not stand for “not P”, as there are many problems
that cannot even be verified in polynomial time.

P versus NP

13

P vs. NP

• Although poly-time verifiability seems like a weaker condition than
poly time solvability, no one has been able to prove that it is
describes a larger class of problems.

• So it is unknown whether P = NP.

P and NP

all problems

P

NP
or

all problems

P=NP

NP-Complete Problems

• NP-complete problems is class of "hardest" problems in NP.

!

• If an NP-complete problem can be solved in polynomial time, then
all problems in NP can be solve in polynomial time, and thus P = NP.

Possible Worlds

all problems

P

NP
or

all problems

P=NP=NPCNPC

NPC = NP-complete

P = NP Question

The question whether P=NP is open since the 70s. It is one of the
central open problems in computer science. The question is of
theoretical interest as well as of great practical importance.

Pragmatic approach: If your problem is NP-complete, then don't
waste time looking for an efficient algorithm, focus on
approximations or heuristics.

