NP-Completeness

Andreas Klappenecker
[partially based on slides by Jennifer Welch]

Definition of NP-Complete

L is NP-complete if and only if
(1) L is in NP and
(2) for all L' in $N P, L^{\prime} s_{p} L$.

In other words, L is at least as hard as every language in NP.

Implication of NP-Completeness

Theorem Suppose L is NP-complete.
(a) If there is a poly time algorithm for L, then $P=N P$.
(b) If there is no poly time algorithm for L, then there is no poly time algorithm for any NP-complete language.

Proving NP-Completeness

(a) Use a direct approach and prove that
(1) L is in $N P$
(2) every other language in NP is polynomially reducible to L
(b) Find an NP-complete problem and use reduction.

Approach (a) is for larger-than-life people, (b) is for mere mortals.

Proving NP-Completeness by Reduction

To show L is NP-complete:
(1) Show L is in NP.
(2.a) Choose an appropriate known NP-complete language L'.
(2.b) Show L' $\leq_{p} L$.

This works, since every language L" in NP is polynomially reducible to L^{\prime}, and $L^{\prime} \leq_{p} L$. By transitivity, $L^{\prime \prime} \leq_{p} L$.

SAT

First NP-Complete Problem

How do we get started? Need to show via brute force that some problem is NP-complete.

- Logic problem "satisfiability" (or SAT).
- Given a boolean expression (collection of boolean variables connected with ANDs and ORs), is it satisfiable, i.e., is there a way to assign truth values to the variables so that the expression evaluates to TRUE?

Conjunctive Normal Form (CNF)

Boolean variable: Indeterminate with values T or F. Example: x, y
Literal: Variable or negation of a variable. Example: $x, \neg x$
Clause: Disjunction (OR) of several literals. Example: $x \vee \neg y \vee z \vee w$
CNF formula: Conjunction (AND) of several clauses.
Example: $(x \vee y) \wedge(z \vee \neg w \vee \neg x)$

Satisfiable CNF Formula

- Is $(x \vee \neg y)$ satisfiable?
- yes: set $x=T$ and $y=F$ to get overall T
- Is $x \wedge \neg x$ satisfiable?
- no: both $x=T$ and $X=F$ result in overall F
- Is $(x \vee y) \wedge(z \vee w \vee x)$ satisfiable?
- yes: $x=T, y=T, z=F, w=T$ result in overall T
- If formula has n variables, then there are 2^{n} different truth assignments.

Definition of SAT

SAT = all (and only) strings that encode satisfiable CNF formulas.

SAT is NP-Complete

- Cook's Theorem: SAT is NP-complete.
- Proof ideas:
- (1) SAT is in NP: Given a candidate solution (a truth assignment) for a CNF formula, verify in polynomial time (by plugging in the truth values and evaluating the expression) whether it satisfies the formula (makes it true).

SAT is NP-Complete

- How to show that every language in NP is polynomially reducible to SAT?
- Key idea: the common thread among all the languages in NP is that each one is solved by some nondeterministic Turing machine (a formal model of computation) in polynomial time.
- Given a description of a poly time TM, construct in poly time, a CNF formula that simulates the computation of the TM.

