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3SAT

Given a boolean function in conjunctive normal form such that 
every clause contains exactly three literals, decide whether the 
formula is satisfiable. 


[This a special case of SAT] 



Proving NP-Completeness 

How do you prove that a decision problem L is NP-complete?


(1) Show that L is in NP.


(2.a) Choose an appropriate known NP-complete language L'.


(2.b) Show L' ≤p L


!



Proof Strategy

(1) 3SAT is in NP, since we can check in polynomial time 
whether a given truth assignment evaluates to true. 


(2.a) Choose SAT as a known NP-complete problem.


(2.b) Describe a reduction from SAT inputs to 3SAT inputs


! computable in polynomial time


! SAT input is satisfiable iff constructed 3SAT input is satisfiable



General Idea of the Reduction

We're given an arbitrary CNF formula C = c1∧ c2 ∧ … ∧ cm over set of 
variables, where each ci is a clause (a disjunction of literals).


We will replace each clause ci with a conjunction of clauses ci', and may 
use some extra variables. Each clause in ci' will have exactly 3 literals. The 
transformed input will be conjunction of all the clauses in all the ci'.




Reduction from SAT to 3SAT
Let ci = z1∨ z2 ∨ … ∨ zk 


Case 1:  k = 1.  Use extra variables yi
1 and yi

2.  Replace ci with 4 clauses:


(z1 ∨ yi
1 ∨ yi

2) ⋀ (z1 ∨¬yi
1 ∨ yi

2) ⋀ (z1 ∨ yi
1 ∨ ¬yi

2) ⋀ (z1 ∨ ¬yi
1 ∨ ¬yi

2).


!

!



Reduction from SAT to 3SAT
Let ci = z1∨ z2 ∨ … ∨ zk 


Case 2:  k = 2.  Use extra variable yi
1.  Replace ci with 2 clauses:


 (z1 ∨ z2 ∨ ¬yi
1) ⋀ (z1 ∨ z2 ∨ yi

1).


!

!

 



Reduction from SAT to 3SAT
Let ci = z1∨ z2 ∨ … ∨ zk 


Case 3:  k = 3.  No extra variables are needed.  


Keep ci: (z1 ∨ z2 ∨ z3)


!

 


!



Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk 


Case 4:  k > 3.  Use extra variables yi
1, …, yi

k-3.  Replace ci with k-2 clauses:


 (z1 ∨ z2 ∨ yi
1)


   ⋀(¬yi
1 ∨ z3 ∨ yi

2)⋀(¬yi
2 ∨ z4 ∨ yi

3)⋀ ... 


   ⋀(¬yi
k-5 ∨ zk-3 ∨ yi

k-4)⋀(¬yi
k-4 ∨ zk-2 ∨ yi

k-3) 


   ⋀(¬yi
k-3 ∨ zk-1 ∨ zk)


Text



Polynomial Time Reduction

!

!

Each new formula is at most a constant times larger than the 
original formula, and the translation is straightforward. Therefore, 
the reduction is polynomial time. 


!

!



Correctness of the Reduction

Show that CNF formula C is satisfiable iff the 3-CNF 
formula C' constructed is satisfiable.


=>: Suppose that C is satisfiable.  We need to construct a 
satisfying truth assignment for C'.


For variables in C’ that are already in C, we use same truth 
assignments as for C.


How should we assign T/F to the new variables?



Truth Assignment for New Variables
Let ci = z1∨ z2 ∨ … ∨ zk 


Case 1:  k = 1.  Use extra variables yi
1 and yi

2.  Replace ci with 4 clauses:


(z1 ∨ yi
1 ∨ yi

2) ⋀ (z1 ∨¬yi
1 ∨ yi

2) ⋀ (z1 ∨ yi
1 ∨ ¬yi

2) ⋀ (z1 ∨ ¬yi
1 ∨ ¬yi

2).


!

!
Assign yi’s with arbitrary values, as z1 is true



Reduction from SAT to 3SAT
Let ci = z1∨ z2 ∨ … ∨ zk 


Case 2:  k = 2.  Use extra variable yi
1.  Replace ci with 2 clauses:


 (z1 ∨ z2 ∨ ¬yi
1) ⋀ (z1 ∨ z2 ∨ yi

1).


!

!

 

Assign yi’s with arbitrary values, as z1 ∨ z2 is true



Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk 


Case 3:  k = 3.  No extra variables are needed.  


Keep ci: (z1 ∨ z2 ∨ z3)


!

 



Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk 


Case 4:  k > 3.  Use extra variables yi
1, …, yi

k-3.  Replace ci with k-2 clauses:


 (z1 ∨ z2 ∨ yi
1)


   ⋀(¬yi
1 ∨ z3 ∨ yi

2)⋀(¬yi
2 ∨ z4 ∨ yi

3)⋀ ... 


   ⋀(¬yi
k-5 ∨ zk-3 ∨ yi

k-4)⋀(¬yi
k-4 ∨ zk-2 ∨ yi

k-3) 


   ⋀(¬yi
k-3 ∨ zk-1 ∨ zk)


If z1 or z2 is true, set all yi’s to 
false, so all later clauses have a 

true literal. 



Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk 


Case 4:  k > 3.  Use extra variables yi
1, …, yi

k-3.  Replace ci with k-2 clauses:


 (z1 ∨ z2 ∨ yi
1)


   ⋀(¬yi
1 ∨ z3 ∨ yi

2)⋀(¬yi
2 ∨ z4 ∨ yi

3)⋀ ... 


   ⋀(¬yi
k-5 ∨ zk-3 ∨ yi

k-4)⋀(¬yi
k-4 ∨ zk-2 ∨ yi

k-3) 


   ⋀(¬yi
k-3 ∨ zk-1 ∨ zk)


If zk-1 or zk is the first true literal 
of ci, set all yi’s to true, so all 

earlier clauses have a true literal. 



Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk 


Case 4:  k > 3.  Use extra variables yi
1, …, yi

k-3.  Replace ci with k-2 clauses:


 (z1 ∨ z2 ∨ yi
1)


   ⋀(¬yi
1 ∨ z3 ∨ yi

2)⋀(¬yi
2 ∨ z4 ∨ yi

3)⋀ ... 


   ⋀(¬yi
k-5 ∨ zk-3 ∨ yi

k-4) ⋀ (¬yi
k-4 ∨ zk-2 ∨ yi

k-3) 


   ⋀(¬yi
k-3 ∨ zk-1 ∨ zk)


If first true literal is in between, 
set all earlier yi's to true and all 
later yi's to false. 



Correctness of Reduction

<=: Suppose the newly constructed 3SAT formula C' is 
satisfiable.  We must show that the original SAT formula C 
is also satisfiable.


Use the same satisfying truth assignment for C as for 
C' (ignoring new variables).


Show each original clause has at least one true literal in it.



Original Clause is True
Let ci = z1∨ z2 ∨ … ∨ zk 


Case 1:  k = 1.  Use extra variables yi
1 and yi

2.  Replace ci with 4 clauses:


ci’ = (z1 ∨ yi
1 ∨ yi

2) ⋀ (z1 ∨¬yi
1 ∨ yi

2) ⋀ (z1 ∨ yi
1 ∨ ¬yi

2) ⋀ (z1 ∨ ¬yi
1 ∨ ¬yi

2).


!

!

If ci’ is true, then ci = z1 must be true, since 
one  pair of literals in yi1 and yi2 must be true



Reduction from SAT to 3SAT
Let ci = z1∨ z2 ∨ … ∨ zk 


Case 2:  k = 2.  Use extra variable yi
1.  Replace ci with 2 clauses:


ci’= (z1 ∨ z2 ∨ ¬yi
1) ⋀ (z1 ∨ z2 ∨ yi

1).


!

!

 

If ci’ is true, then ci = z1 ∨ z2 must be true



Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk 


Case 3:  k = 3.  No extra variables are needed.  


Keep ci: (z1 ∨ z2 ∨ z3)


!

 



Reduction from SAT to 3SAT

Let ci = z1∨ z2 ∨ … ∨ zk 


Case 4:  k > 3.  Use extra variables yi
1, …, yi

k-3.  Replace ci with k-2 clauses:


 (z1 ∨ z2 ∨ yi
1)


   ⋀(¬yi
1 ∨ z3 ∨ yi

2)⋀(¬yi
2 ∨ z4 ∨ yi

3)⋀ ... 


   ⋀(¬yi
k-5 ∨ zk-3 ∨ yi

k-4) ⋀ (¬yi
k-4 ∨ zk-2 ∨ yi

k-3) 


   ⋀(¬yi
k-3 ∨ zk-1 ∨ zk)


Suppose that there is a valuation 
such that ci’ is true and ci is false. 
Then yi

k must be true for all k, so the 
last clause in ci’ must be false, 
contradiction.



Conclusions

We have shown that 


3SAT is in NP


there exists a polynomial time reduction from SAT to 3SAT.


Therefore, 3SAT is NP-complete. 


