Graph Algorithms

Andreas Klappenecker

Graphs

A graph is a set of vertices that are pairwise connected by edges.
We distinguish between directed and undirected graphs.
Why are we interested in graphs?

- Graphs are a very useful abstraction
- Graphs have many interesting applications
- Thousands of graph algorithms are known

Versatile Abstraction

Application	Vertices	Edges
Traffic	Intersections	Roads
Social Network	People	Friendship
Internet	Class C network	Connection
Game	Board Position	Legal Move
Erdos number	People	Coauthored Paper
CMOS Circuits	FET, Vdd, Vss, I/O	Wires
Financial	Stock, Currency	Transactions
Programs	Procedures	Procedure Call f->g

The Internet

Undirected Graphs

An undirected graph is a pair $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, where

- V is a finite set
- E is a subset of $\{e \mid e \subseteq V$, $|e|=2\}$.

The elements in V are called vertices.
Elements in E are called edges, e.g. e=\{u,v\}, written $e=(u, v)$.
Self-loops are not allowed for undirected graphs, $e \neq\{u, u\}=\{u\}$.

Directed Graphs

An directed graph is a pair $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, where

- V is a finite set
- E is a subset of $V \times V$

The set of edges does not need to be symmetric.
Thus, if (u, v) is an edge, then (v, u) does not need to be an edge.
We illustrate a directed edge often by an arrow $u \rightarrow v$.

Graph Terminology

If $e=(u, v)$ is an edge in a graph, then v is called adjacent to u.
For undirected graphs, adjacency is a symmetric relation.
The edge e is said to be incident to u and v.
The number of edges incident to a vertex is called the degree of the vertex.

Graph Terminology

A path is a sequence of vertices that are connected by edges.
A cycle is a path whose first and last vertices are the same.
Two vertices are connected if and only if there is a path between them.

Breadth-First Search

Breadth First Search (BFS)

Input: A graph $G=(V, E)$ and source node s in V mark all nodes v in V as unvisited mark source node s as visited
enq(Q,s) // first-in first-out queue Q
while (Q is not empty) \{
$u:=\operatorname{deq}(Q)$;
for each unvisited neighbor v of u \{ mark v as visited; enq(Q, v);
\}
\}

Example

demo-bfs

BFS Example

Visit the nodes in the order:
s
a, d
b, c

BFS Tree

We can make a spanning tree rooted at the source node s by remembering the parent of each node.

Breadth First Search (BFS)

Input: A graph $G=(V, E)$ and source node s in V mark all nodes v in \vee as unvisited; set parent $[v]:=$ nil for all v in V mark source node s as visited; parent[s]:=s;
enq(Q,s) // first-in first-out queue Q
while (Q is not empty) \{
$u:=\operatorname{deq}(Q)$;
for each unvisited neighbor v of u \{ mark v as visited; enq (Q, v); parent $[v]:=u$
$\}$
\}

BFS Tree Example

BFS Trees

The BFS tree is in general not unique for a given graph. It depends on the order in which neighboring nodes are processed.

BFS Numbering

During the breadth-first search, assign to each node v its distance $\mathrm{d}[\mathrm{v}]$ from the source.

Breadth First Search (BFS)

Input: A graph $G=(V, E)$ and source node s in V
mark all nodes v in V as unvisited; set parent $[v]:=$ nil; $d[v]=\infty$ for all v in V mark source node s as visited; parent[s] := $s ; d[v]=0$
enq (Q, s) // first-in first-out queue Q
while (Q is not empty) \{
$u:=\operatorname{deq}(Q)$;
for each unvisited neighbor v of u \{ mark v as visited; enq(Q,v); parent $[v]:=u ; d[v]=d[u]+1$
\}
\}

BFS Numbering Example

Shortest Path Tree

Theorem: The BFS algorithm

- visits all and only nodes reachable from s
- for all nodes v sets $d[v]$ to the shortest path distance from s to v
- sets parent variables to form a shortest path tree

Proof Ideas

We use induction on the distance from the source node s to show that a node v at distance x from s has has correct $d[v]$.

Basis: Distance 0 . $\mathrm{d}[\mathrm{s}]$ is set to 0 .
Induction: Assume that all nodes u at distance $x-1$ from s satisfy $\mathrm{d}[u]=\mathrm{x}-1$. Our goal is to show that every node v at distance x satisfies $d[v]=x$ as well.

Since v is at distance x, it has at least one neighbor at distance $x-1$. Let u be the first of these neighbors that is enqueued.

Proof Ideas

A key property of shortest path distances: If v has distance x, - it must have a neighbor with distance $x-1$,

- no neighbor has distance less than $x-1$, and
- no neighbor has distance more than $x+1$

Proof Ideas

Claim: When the node u is dequeued, then v is still unvisited.
Indeed, this follows from behavior of the queue and the fact that d never underestimates the distance.

By induction, $\mathrm{d}[\mathrm{u}]=\mathrm{x}-1$.
When v is enqueued, $d[v]$ is set to $d[u]+1=x$.

BFS Running Time

Initialization of each node takes $O(V)$ time
Every node is enqueued once and dequeued once, taking $O(V)$ time

When a node is dequeued, all its neighbors are checked to see if they are unvisited, taking time proportional to number of neighbors of the node, and summing to $O(E)$ over all iterations Total time is $O(V+E)$

Credits

In the preparation of these slides, I got inspired by slides by Robert Sedgewick. The slides on BFS are based on slides by Jennifer Welch.

