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Single Source Shortest Path 

Given:  


a directed or undirected graph G = (V,E) 


a source node s in V


a weight function w: E -> R. 


Goal:  For each v in V, find a path of minimum total weight from the source 
node s to v. 


Problem:
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Special Case

Suppose that the weights of all edges are the same. Then breadth-
first search can be used to solve the single-source shortest path 
problem. 


Indeed, the tree rooted at s in the BFS forest is the solution.


Goal: Solve the more general problem of single-source shortest path 
problems with arbitrary (non-negative) edge weights. 



Intermezzo: Priority Queues



Priority Queues
A min-priority queue is a data structure for maintaining a set S of elements, 
each with an associated value called key. It supports the operations: 


 insert(S,x) which realizes S := S ∪ {x}


 minimum(S) which returns the element with the smallest key. 


 extract-min(S) which removes and returns the element with the 
smallest key from S. 


 decrease-key(S,x,k) which decreases the value of x’s key to the lower 
value k, where k < key[x]. 



Simple Array Implementation

Suppose that the elements are numbered from 1 to n, and that the 
keys are stored in an array key[1..n]. 


• insert and decrease-key take O(1) time.


• extract-min takes O(n) time, as the whole array must be searched 
for the minimum. 



Binary min-heap Implementation

Suppose that we realize the priority queue of a set with n element 
with a binary min-heap. 


• extract-min takes O(log n) time.


• decrease-key takes O(log n) time.


• insert takes O(log n) time.


Building the heap takes O(n) time. 



Fibonacci-Heap Implementation

Suppose that we realize the priority queue of a set 
with n elements with a Fibonacci heap. Then


• extract-min takes O(log n) amortized time. 


• decrease-key takes O(1) amortized time.


• insert takes O(1) time.


[One can even realize priority queues with worst case times as above] 



Dijkstra’s Single Source Shortest Path Algorithm



Dijkstra's SSSP Algorithm

We assume all edge weights are nonnegative.


Start with source node s and iteratively construct a tree 
rooted at s.


Each node keeps track of the tree node that provides 
cheapest path from s.


At each iteration, we include the node into the tree whose 
cheapest path from s is the overall cheapest.



Implementation Questions

How can each node keep 
track of its best path to s? 


How can we know which node that 
is not in the tree yet has the 

overall cheapest path?

How can we maintain the shortest path information  of 
each node after adding a node to the shortest path tree?  



Dijkstra's Algorithm
while (Q is not empty) { 


  u := extract-min(Q)


  for each neighbor v of u { 


       if (d[u] + w(u,v) < d[v]) { // relax


          d[v] := d[u] + w(u,v); 


          decrease-key(Q,v,d[v])


          parent(v) := u


       }


    } 


  }

Input:  G = (V,E,w) and source node s


for all nodes v in V { 


d[v] := infinity 


}


d[s] := 0 


Enqueue all nodes in priority queue 
Q 




Dijkstra's Algorithm Example
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Correctness
Let Ti be the tree constructed after i-th iteration of the while loop:


• The nodes in Ti are not in Q


• The edges in Ti are indicated by parent variables


Show by induction on i that the path in Ti from s to u is a shortest 
path and has distance d[u], for all u in Ti.


Basis:  i = 1.  


   s is the only node in T1 and d[s] = 0. 



Correctness

Induction:  Assume Ti is a correct shortest path tree. We need to show that Ti+1 
is a correct shortest path tree as well.


Let u be the node added in iteration i.


Let x = parent(u).
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Need to show that path in Ti+1 
from s to u is a shortest path,  
and has distance d[u]



Correctness

P, path in Ti+1 

from s to u

(a,b) is first edge in P' that 
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Correctness

Let P1 be part of P' before (a,b).


Let P2 be part of P' after (a,b).


w(P') = w(P1) + w(a,b) + w(P2)


        ≥ w(P1) + w(a,b)  (since weight are nonnegative)


        ≥ wt of path in Ti from s to a + w(a,b) (inductive hypothesis)


        ≥ w(s->x path in Ti) + w(x,u) (alg chose u in iteration i and d-values are accurate, by I.H.)


        = w(P).


So P is a shortest path, and d[u] is accurate after iteration i+1.


        


         



Running Time
Initialization:  insert each node once


• O(V Tins)


O(V) iterations of while loop


• one extract-min per iteration => O(V Tex)


• for loop inside while loop has variable number of iterations…


For loop has O(E) iterations total


• one decrease-key per iteration => O(E Tdec)


Total is O(V (Tins + Tex) + E Tdec) // details depend on min-queue implementation



Running Time using  
Binary Heaps and Fibonacci Heaps

Recall, total running time is O(V(Tins + Tex) + E•Tdec)


If priority queue is implemented with a binary heap, then 


• Tins = Tex = Tdec = O(log V)


• total time is O(E log V)


There are fancier implementations of the priority queue, such as Fibonacci 
heap:


• Tins = O(1), Tex = O(log V), Tdec = O(1) (amortized)


• total time is O(V log V + E)



Running Time using Simpler Heap

In general, running time is O(V(Tins + Tex) + E•Tdec).


If graph is dense, say |E| = Θ(V2), then Tins and Tex can be  
O(V), but Tdec should be O(1).


Implement priority queue with an unsorted array:


 Tins = O(1), Tex = O(V), Tdec = O(1)


 Total running time is O(V2)
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