
Dijkstra’s Single Source Shortest
Path Algorithm

Andreas Klappenecker

Single Source Shortest Path

Given:

a directed or undirected graph G = (V,E)

a source node s in V

a weight function w: E -> R.

Goal: For each v in V, find a path of minimum total weight from the source
node s to v.

Problem:

!
!

!

as
1

-2

Special Case

Suppose that the weights of all edges are the same. Then breadth-
first search can be used to solve the single-source shortest path
problem.

Indeed, the tree rooted at s in the BFS forest is the solution.

Goal: Solve the more general problem of single-source shortest path
problems with arbitrary (non-negative) edge weights.

Intermezzo: Priority Queues

Priority Queues
A min-priority queue is a data structure for maintaining a set S of elements,
each with an associated value called key. It supports the operations:

 insert(S,x) which realizes S := S ∪ {x}

 minimum(S) which returns the element with the smallest key.

 extract-min(S) which removes and returns the element with the
smallest key from S.

 decrease-key(S,x,k) which decreases the value of x’s key to the lower
value k, where k < key[x].

Simple Array Implementation

Suppose that the elements are numbered from 1 to n, and that the
keys are stored in an array key[1..n].

• insert and decrease-key take O(1) time.

• extract-min takes O(n) time, as the whole array must be searched
for the minimum.

Binary min-heap Implementation

Suppose that we realize the priority queue of a set with n element
with a binary min-heap.

• extract-min takes O(log n) time.

• decrease-key takes O(log n) time.

• insert takes O(log n) time.

Building the heap takes O(n) time.

Fibonacci-Heap Implementation

Suppose that we realize the priority queue of a set
with n elements with a Fibonacci heap. Then

• extract-min takes O(log n) amortized time.

• decrease-key takes O(1) amortized time.

• insert takes O(1) time.

[One can even realize priority queues with worst case times as above]

Dijkstra’s Single Source Shortest Path Algorithm

Dijkstra's SSSP Algorithm

We assume all edge weights are nonnegative.

Start with source node s and iteratively construct a tree
rooted at s.

Each node keeps track of the tree node that provides
cheapest path from s.

At each iteration, we include the node into the tree whose
cheapest path from s is the overall cheapest.

Implementation Questions

How can each node keep
track of its best path to s?

How can we know which node that
is not in the tree yet has the

overall cheapest path?

How can we maintain the shortest path information of
each node after adding a node to the shortest path tree?

Dijkstra's Algorithm
while (Q is not empty) {

 u := extract-min(Q)

 for each neighbor v of u {

 if (d[u] + w(u,v) < d[v]) { // relax

 d[v] := d[u] + w(u,v);

 decrease-key(Q,v,d[v])

 parent(v) := u

 }

 }

 }

Input: G = (V,E,w) and source node s

for all nodes v in V {

d[v] := infinity

}

d[s] := 0

Enqueue all nodes in priority queue
Q

Dijkstra's Algorithm Example

a b

d e

c

2

8
4 9

2
4

12

10 6 3

a is source node

0 1 2 3 4 5

Q abcde bcde cde de d Ø

d[a] 0 0 0 0 0 0

d[b] ∞ 2 2 2 2 2

d[c] ∞ 12 10 10 10 10

d[d] ∞ ∞ ∞ 16 13 13

d[e] ∞ ∞ 11 11 11 11

iteration

Correctness
Let Ti be the tree constructed after i-th iteration of the while loop:

• The nodes in Ti are not in Q

• The edges in Ti are indicated by parent variables

Show by induction on i that the path in Ti from s to u is a shortest
path and has distance d[u], for all u in Ti.

Basis: i = 1.

 s is the only node in T1 and d[s] = 0.

Correctness

Induction: Assume Ti is a correct shortest path tree. We need to show that Ti+1
is a correct shortest path tree as well.

Let u be the node added in iteration i.

Let x = parent(u).

!

!

!

s x

Ti

u

Ti+1

Need to show that path in Ti+1
from s to u is a shortest path,
and has distance d[u]

Correctness

P, path in Ti+1

from s to u

(a,b) is first edge in P' that
leaves Ti

s
x

Ti

u

Ti+1

a

b

P', another
path from s to u

Correctness

Let P1 be part of P' before (a,b).

Let P2 be part of P' after (a,b).

w(P') = w(P1) + w(a,b) + w(P2)

 ≥ w(P1) + w(a,b) (since weight are nonnegative)

 ≥ wt of path in Ti from s to a + w(a,b) (inductive hypothesis)

 ≥ w(s->x path in Ti) + w(x,u) (alg chose u in iteration i and d-values are accurate, by I.H.)

 = w(P).

So P is a shortest path, and d[u] is accurate after iteration i+1.

Running Time
Initialization: insert each node once

• O(V Tins)

O(V) iterations of while loop

• one extract-min per iteration => O(V Tex)

• for loop inside while loop has variable number of iterations…

For loop has O(E) iterations total

• one decrease-key per iteration => O(E Tdec)

Total is O(V (Tins + Tex) + E Tdec) // details depend on min-queue implementation

Running Time using  
Binary Heaps and Fibonacci Heaps

Recall, total running time is O(V(Tins + Tex) + E•Tdec)

If priority queue is implemented with a binary heap, then

• Tins = Tex = Tdec = O(log V)

• total time is O(E log V)

There are fancier implementations of the priority queue, such as Fibonacci
heap:

• Tins = O(1), Tex = O(log V), Tdec = O(1) (amortized)

• total time is O(V log V + E)

Running Time using Simpler Heap

In general, running time is O(V(Tins + Tex) + E•Tdec).

If graph is dense, say |E| = Θ(V2), then Tins and Tex can be
O(V), but Tdec should be O(1).

Implement priority queue with an unsorted array:

 Tins = O(1), Tex = O(V), Tdec = O(1)

 Total running time is O(V2)

Credits

This set of slides is based on slides prepared by Jennifer Welch.

