
The Bellman-Ford Algorithm
Andreas Klappenecker

Single Source Shortest Path Problem

Given a graph G=(V,E), a weight function w: E -> R, and a source
node s, find the shortest path from s to v for every v in V.

!

We allow negative edge weights.

G is not allowed to contain cycles of negative total weight.

Dijkstra’s algorithm cannot be used, as weights must be
nonnegative.

Bellman-Ford SSSP Algorithm
Input: directed or undirected graph G = (V,E,w)

for all v in V {

 d[v] = infinity; parent[v] = nil;

}

d[s] = 0; parent[s] = s;

for i := 1 to |V| - 1 { // ensure that information on distance from s propagates

 for each (u,v) in E { // relax all edges

 if (d[u] + w(u,v) < d[v]) then { d[v] := d[u] + w(u,v); parent[v] := u; }

 }

 }

Running Time: O(VE)
Input: directed or undirected graph G = (V,E,w)

for all v in V {

 d[v] = infinity; parent[v] = nil;

}

d[s] = 0; parent[s] = s;

for i := 1 to |V| - 1 {

 for each (u,v) in E { // relax all edges

 if (d[u] + w(u,v) < d[v]) then { d[v] := d[u] + w(u,v); parent[v] := u; }

 }

 }

Init: O(V)

Nested loops:

O(V)O(E)=O(VE)

Bellman-Ford Example

s

c

a
b

1

—2

2

2

1

Let’s process edges in the order

(c,b),(a,b),(c,a),(s,a),(s,c)

Iteration
Node 0 1 2 3

s 0 0 0 0
a ∞ 1 0 0
b ∞ ∞ 3 2
c ∞ 2 2 2

Information Propagation

Consider a graph on n+1 vertices:

s -> a1 -> a2 -> ... -> an-1 -> an

where each edge has weight 1.

Choose edges from right to left.
first. Then node ai has correct
distance estimate after ith iteration.

!

Iteration
Node 0 1 2 3 4

s 0 0 0 0
a ∞ 1 1 1 ...
a ∞ ∞ 2 2 ...
a ∞ ∞ ∞ 3 ...
a ∞ ∞ ∞ ∞ ...

Correctness

Fact 1: The distance estimate d[v] never underestimates the actual
shortest path distance from s to v.

Fact 2: If there is a shortest path from s to v containing at most i
edges, then after iteration i of the outer for loop:

d[v] <= the actual shortest path distance from s to v.

Correctness

Theorem: Suppose that G is a weighted graph without negative
weight cycles and let s denote the source node. Then Bellman-
Ford correctly calculates the shortest path distances from s.

Proof: Every shortest path has at most |V| - 1 edges. By Fact 1
and 2, the distance estimate d[v] is equal to the shortest path
length after |V|-1 iterations.

!

!

Variations

One can stop the algorithm if an iteration does not modify distance
estimates. This is beneficial if shortest paths are likely to be less
than |V|-1.

One can detect negative weight cycles by checking whether
distance estimates can be reduced after |V|-1 iterations.

The Boost Graph Library
The BGL contains generic implementations of all the graph algorithms that we have discussed:

• Breadth-First-Search

• Depth-First-Search

• Kruskal’s MST algorithm

• Strongly Connected Components

• Dijkstra’s SSSP algorithm

• Bellman-Ford SSSP algorithm

I recommend that you gain experience with this useful library. Recommended reading: The Boost
Graph Library by J.G. Siek, L.-Q. Lee, and A. Lumsdaine, Addison-Wesley, 2002.

