The Bellman-Ford Algorithm

Andreas Klappenecker

Single Source Shortest Path Problem

Given a graph G=(V,E), a weight function w: $E \rightarrow R$, and a source node s, find the shortest path from s to v for every v in V.

- We allow negative edge weights.
- G is not allowed to contain cycles of negative total weight.
- Dijkstra's algorithm cannot be used, as weights must be nonnegative.

Bellman-Ford SSSP Algorithm

```
Input: directed or undirected graph G = (V,E,w)
for all v in V {
  d[v] = infinity; parent[v] = nil;
}
d[s] = 0; parent[s] = s;
for i := 1 to |V| - 1 { // ensure that information on distance from s propagates
   for each (u,v) in E { // relax all edges
      if (d[u] + w(u,v) < d[v]) then { d[v] := d[u] + w(u,v); parent[v] := u; }
```

Running Time: O(VE)

Input: directed or undirected graph G = (V, E, w)d[s] = 0; parent[s] = s; for i := 1 to |V| - 1 { for each (u,v) in E { // relax all edges if (d[u] + w(u,v) < d[v]) then { d[v] := d[u] + w(u,v); parent[v] := u; }

Init: O(V)

Nested loops: O(V)O(E)=O(VE)

Bellman-Ford Example

Let's process edges in the order (c,b),(a,b),(c,a),(s,a),(s,c)

/	Iteration					
Node	0	1	2	3		
S	0	0	0	0		
۵	$\boldsymbol{\infty}$	1	0	0		
b	$\boldsymbol{\infty}$	∞	3	2		
С	∞	2	2	2		

Information Propagation

Consider a graph on n+1 vertices:

 $s \rightarrow a_1 \rightarrow a_2 \rightarrow \dots \rightarrow a_{n-1} \rightarrow a_n$

where each edge has weight 1.

Choose edges from right to left. first. Then node a_i has correct distance estimate after ith iteration.

	Iteration						
Node	0	1	2	3	4		
S	0	0	0	0			
٥	Ø	1	1	1	•••		
٥	Ø	8	2	2	•••		
٥	8	8	8	3	•••		
a	Ø	Ø	Ø	Ø	•••		

Correctness

Fact 1: The distance estimate d[v] never underestimates the actual shortest path distance from s to v.

Fact 2: If there is a shortest path from s to v containing at most i edges, then after iteration i of the outer for loop: d[v] <= the actual shortest path distance from s to v.

Correctness

Theorem: Suppose that G is a weighted graph without negative weight cycles and let s denote the source node. Then Bellman-Ford correctly calculates the shortest path distances from s.

Proof: Every shortest path has at most |V| - 1 edges. By Fact 1 and 2, the distance estimate d[v] is equal to the shortest path length after |V|-1 iterations.

Variations

One can stop the algorithm if an iteration does not modify distance estimates. This is beneficial if shortest paths are likely to be less than |V|-1.

One can detect negative weight cycles by checking whether distance estimates can be reduced after |V|-1 iterations.

The Boost Graph Library

The BGL contains generic implementations of all the graph algorithms that we have discussed:

- Breadth-First-Search
- Depth-First-Search
- Kruskal's MST algorithm
- Strongly Connected Components
- Dijkstra's SSSP algorithm
- Bellman-Ford SSSP algorithm

I recommend that you gain experience with this useful library. Recommended reading: The Boost Graph Library by J.G. Siek, L.-Q. Lee, and A. Lumsdaine, Addison-Wesley, 2002.

