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Single Source Shortest Path Problem

Given a graph G=(V,E), a weight function w: E -> R, and a source 
node s, find the shortest path from s to v for every v in V. 


!

We allow negative edge weights. 


G is not allowed to contain cycles of negative total weight. 


Dijkstra’s algorithm cannot be used, as weights must be 
nonnegative.




Bellman-Ford SSSP Algorithm
Input:  directed or undirected graph G = (V,E,w)


for all v in V { 


   d[v] = infinity; parent[v] = nil;


} 


d[s] = 0; parent[s] = s;


for i := 1 to |V| - 1 { // ensure that information on distance from s propagates


    for each (u,v) in E { // relax all edges


       if (d[u] + w(u,v) < d[v]) then {  d[v] := d[u] + w(u,v); parent[v] := u; }


     }


 }



Running Time: O(VE)
Input:  directed or undirected graph G = (V,E,w)


for all v in V { 


   d[v] = infinity; parent[v] = nil;


} 


d[s] = 0; parent[s] = s;


for i := 1 to |V| - 1 { 


    for each (u,v) in E { // relax all edges


       if (d[u] + w(u,v) < d[v]) then {  d[v] := d[u] + w(u,v); parent[v] := u; }


     }


 }

Init: O(V)

Nested loops:

O(V)O(E)=O(VE)



Bellman-Ford Example
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Let’s process edges in the order

(c,b),(a,b),(c,a),(s,a),(s,c)

Iteration
Node 0 1 2 3

s 0 0 0 0
a ∞ 1 0 0
b ∞ ∞ 3 2
c ∞ 2 2 2



Information Propagation

Consider a graph on n+1 vertices: 


s -> a1 -> a2 -> ... -> an-1 -> an 


where each edge has weight 1. 


Choose edges from right to left. 
first. Then node ai has correct 
distance estimate after ith iteration. 


!

 


Iteration
Node 0 1 2 3 4

s 0 0 0 0
a ∞ 1 1 1 ...
a ∞ ∞ 2 2 ...
a ∞ ∞ ∞ 3 ...
a ∞ ∞ ∞ ∞ ...



Correctness

Fact 1: The distance estimate d[v] never underestimates the actual 
shortest path distance from s to v. 


Fact 2: If there is a shortest path  from s to v containing at most i 
edges, then after iteration i of the outer for loop:


d[v] <= the actual shortest path distance from s to v.




Correctness

Theorem: Suppose that G is a weighted graph without negative 
weight cycles and let s denote the source node. Then Bellman-
Ford correctly calculates the shortest path distances from s. 


Proof: Every shortest path has at most |V| - 1 edges. By Fact 1 
and 2, the distance estimate d[v] is equal to the shortest path 
length after |V|-1 iterations. 


!

!



Variations

One can stop the algorithm if an iteration does not modify distance 
estimates. This is beneficial if shortest paths are likely to be less 
than |V|-1. 


One can detect negative weight cycles by checking whether 
distance estimates can be reduced after |V|-1 iterations. 



The Boost Graph Library
The BGL contains generic implementations of all the graph algorithms that we have discussed: 


• Breadth-First-Search


• Depth-First-Search


• Kruskal’s MST algorithm


• Strongly Connected Components


• Dijkstra’s SSSP algorithm


• Bellman-Ford SSSP algorithm


I recommend that you gain experience with this useful library. Recommended reading: The Boost 
Graph Library by J.G. Siek, L.-Q. Lee, and A. Lumsdaine, Addison-Wesley, 2002. 


