## The Bellman-Ford Algorithm

Andreas Klappenecker

## Single Source Shortest Path Problem

Given a graph $G=(V, E)$, a weight function $w: E \rightarrow R$, and a source node $s$, find the shortest path from $s$ to $v$ for every $v$ in $V$.

- We allow negative edge weights.
- G is not allowed to contain cycles of negative total weight.
- Dijkstra's algorithm cannot be used, as weights must be nonnegative.


## Bellman-Ford SSSP Algorithm

```
Input: directed or undirected graph G = (V,E,w)
for all v in v {
    d[v] = infinity; parent[v] = nil;
}
d[s]=0; parent[s] = s;
for i:= 1 to |V| - 1 { // ensure that information on distance from s propagates
    for each (u,v) in E { // relax all edges
        if }(d[u]+w(u,v)<d[v])\mathrm{ then { d[v]:= d[u] + w(u,v); parent[v]:= u; }
    }
}
```


## Running Time: O(VE)

Input: directed or undirected graph $G=(V, E, w)$

```
for all v in v {
    d[v] = infinity; parent[v]= nil:
d[s] = 0; parent[s] = s;
for i:= 1 to |V| - 1 {
    for each (u,v) in E { // relax all edges
        if (d[u]+w(u,v)<d[v]) then {d[v]:= d[u] + w(u,v); parent[v]:= u;}
    }
}
```

    Init: O(V)
    
## Bellman-Ford Example

Let's process edges in the order $(c, b),(a, b),(c, a),(s, a),(s, c)$


|  | Iteration |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Node | 0 | 1 | 2 | 3 |
| s | 0 | 0 | 0 | 0 |
| a | $\infty$ | 1 | 0 | 0 |
| $b$ | $\infty$ | $\infty$ | 3 | 2 |
| c | $\infty$ | 2 | 2 | 2 |

## Information Propagation

Consider a graph on $n+1$ vertices:
$s \rightarrow a_{1} \rightarrow a_{2} \rightarrow \ldots \rightarrow a_{n-1} \rightarrow a_{n}$
where each edge has weight 1.
Choose edges from right to left. first. Then node $a_{i}$ has correct distance estimate after $i^{\text {th }}$ iteration.

|  | Iteration |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Node | 0 | 1 | 2 | 3 | 4 |  |
| $s$ | 0 | 0 | 0 | 0 |  |  |
| $a$ | $\infty$ | 1 | 1 | 1 | $\ldots$ |  |
| $a$ | $\infty$ | $\infty$ | 2 | 2 | $\ldots$ |  |
| $a$ | $\infty$ | $\infty$ | $\infty$ | 3 | $\ldots$ |  |
| $a$ | $\infty$ | $\infty$ | $\infty$ | $\infty$ | $\ldots$ |  |

## Correctness

Fact 1: The distance estimate $\mathrm{d}[\mathrm{v}]$ never underestimates the actual shortest path distance from sto v .

Fact 2: If there is a shortest path from $s$ to $v$ containing at most $i$ edges, then after iteration $i$ of the outer for loop:
$\mathrm{d}[\mathrm{v}]<=$ the actual shortest path distance from s to v .

## Correctness

Theorem: Suppose that $G$ is a weighted graph without negative weight cycles and let s denote the source node. Then BellmanFord correctly calculates the shortest path distances from s .

Proof: Every shortest path has at most $|\mathrm{V}|-1$ edges. By Fact 1 and 2, the distance estimate $\mathrm{d}[\mathrm{v}]$ is equal to the shortest path length after |V|-1 iterations.

## Variations

One can stop the algorithm if an iteration does not modify distance estimates. This is beneficial if shortest paths are likely to be less than $|\mathrm{V}|-1$.

One can detect negative weight cycles by checking whether distance estimates can be reduced after |V|-1 iterations.

## The Boost Graph Library

The BGL contains generic implementations of all the graph algorithms that we have discussed:

- Breadth-First-Search
- Depth-First-Search
- Kruskal's MST algorithm
- Strongly Connected Components
- Dijkstra's SSSP algorithm
- Bellman-Ford SSSP algorithm

I recommend that you gain experience with this useful library. Recommended reading: The Boost Graph Library by J.G. Siek, L.-Q. Lee, and A. Lumsdaine, Addison-Wesley, 2002.

