The Bellman-Ford Algorithm

Andreas Klappenecker
Single Source Shortest Path Problem

Given a graph \(G=(V,E) \), a weight function \(w: E \rightarrow \mathbb{R} \), and a source node \(s \), find the shortest path from \(s \) to \(v \) for every \(v \) in \(V \).

- We allow negative edge weights.
- \(G \) is not allowed to contain cycles of negative total weight.
- Dijkstra’s algorithm cannot be used, as weights must be nonnegative.
Bellman-Ford SSSP Algorithm

Input: directed or undirected graph \(G = (V,E,w) \)

for all \(v \) in \(V \) {
 \(d[v] = \text{infinity}; \) parent\([v]\) = nil;
}

\(d[s] = 0; \) parent\([s]\) = \(s \);

for \(i := 1 \) to \(|V| - 1\) { // ensure that information on distance from \(s \) propagates
 for each \((u,v) \) in \(E \) { // relax all edges
 if \(d[u] + w(u,v) < d[v] \) then {
 \(d[v] := d[u] + w(u,v); \) parent\([v]\) := \(u \);
 }
 }
}
Input: directed or undirected graph $G = (V,E,w)$

for all v in V

 $d[v] = \infty; parent[v] = nil$;

$d[s] = 0; parent[s] = s$;

for $i := 1$ to $|V| - 1$

 for each (u,v) in E { // relax all edges

 if ($d[u] + w(u,v) < d[v]$) then { $d[v] := d[u] + w(u,v); parent[v] := u;$ }

 }

Init: $O(V)$

Nested loops: $O(V)O(E)=O(VE)$
Bellman-Ford Example

Let's process edges in the order (c,b),(a,b),(c,a),(s,a),(s,c)

<table>
<thead>
<tr>
<th>Node</th>
<th>Iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>s</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>∞</td>
</tr>
<tr>
<td>b</td>
<td>∞</td>
</tr>
<tr>
<td>c</td>
<td>∞</td>
</tr>
</tbody>
</table>
Consider a graph on $n+1$ vertices:

$s \rightarrow a_1 \rightarrow a_2 \rightarrow \ldots \rightarrow a_{n-1} \rightarrow a_n$

where each edge has weight 1.

Choose edges from right to left first. Then node a_i has correct distance estimate after i^{th} iteration.

<table>
<thead>
<tr>
<th>Node</th>
<th>Iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>s</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>∞</td>
</tr>
<tr>
<td>a</td>
<td>∞</td>
</tr>
<tr>
<td>a</td>
<td>∞</td>
</tr>
<tr>
<td>a</td>
<td>∞</td>
</tr>
</tbody>
</table>
Correctness

Fact 1: The distance estimate $d[v]$ never underestimates the actual shortest path distance from s to v.

Fact 2: If there is a shortest path from s to v containing at most i edges, then after iteration i of the outer for loop:

$$d[v] \leq \text{the actual shortest path distance from } s \text{ to } v.$$
Correctness

Theorem: Suppose that G is a weighted graph without negative weight cycles and let s denote the source node. Then Bellman-Ford correctly calculates the shortest path distances from s.

Proof: Every shortest path has at most $|V| - 1$ edges. By Fact 1 and 2, the distance estimate $d[v]$ is equal to the shortest path length after $|V|-1$ iterations.
Variations

One can stop the algorithm if an iteration does not modify distance estimates. This is beneficial if shortest paths are likely to be less than $|V|-1$.

One can detect negative weight cycles by checking whether distance estimates can be reduced after $|V|-1$ iterations.
The Boost Graph Library

The BGL contains generic implementations of all the graph algorithms that we have discussed:

- Breadth-First-Search
- Depth-First-Search
- Kruskal’s MST algorithm
- Strongly Connected Components
- Dijkstra’s SSSP algorithm
- Bellman-Ford SSSP algorithm

I recommend that you gain experience with this useful library. Recommended reading: The Boost Graph Library by J.G. Siek, L.-Q. Lee, and A. Lumsdaine, Addison-Wesley, 2002.