Randomized Selection

Andreas Klappenecker
Randomized Selection

Randomized-Select(A, p, r, i) // return the ith smallest elem. of A[p..r]

if (p == r) then return A[p];

q := Randomized-Partition(A, p, r); // compute pivot

k := q-p+1; // number of elements <= pivot

if (i == k) then return A[q]; // found ith smallest element

elseif (i < k) then return Randomized-Select(A, p, q-1, i);

else Randomized-Select(A, q+1, r, i-k);
Partition

Randomized-Partition(A,p,r)

\[i := \text{Random}(p,r); \]

\[\text{swap}(A[i],A[r]); \]

\[\text{Partition}(A,p,r); \]

Almost the same as Partition, but now the pivot element is not the rightmost element, but rather an element from \(A[p..r] \) that is chosen uniformly at random.
The worst case running time of Randomized-Select is $\Theta(n^2)$.

The expected running time of Randomized-Select is $\Theta(n)$.

No particular input elicits worst case running time.
Running Time

Let $T(n)$ denote the random variable describing the running time of Randomized-Select on input of $A[p..r]$.

Suppose $A[p..r]$ contains n elements. Each element of $A[p..r]$ is equally likely to be the pivot, so $A[p..q]$ has size k with probability $1/n$.

$X_k = I\{\text{the subarray } A[p..q] \text{ has } k \text{ elements}\}$

$E[X_k] = 1/n$ (assuming elements are distinct)
Running Time

Let’s assume that $T(n)$ is monotonically growing.

Three choices: (a) find i^{th} smallest element right away, (b) recurse on $A[p..q-1]$, or (c) recurse on $A[p+1,r]$.

When $X_k = 1$, then

- $A[p..q-1]$ has $k-1$ elements and
- $A[p+1..r]$ has $n-k$ elements.
Recurrence

\[T(n) \leq \sum_{k=1}^{n} X_k \left(T(\max(k - 1, n - k)) + O(n) \right) \]

\[\leq \sum_{k=1}^{n} X_k T(\max(k - 1, n - k)) + O(n) \]

- Assume that we always recurse to larger subarray
- \(O(n) \) for partitioning
- \(X_k = 1 \) for a single choice, so partition once
Expected Running Time

\[E[T(n)] \leq \sum_{k=1}^{n} E[X_k T(\max(k - 1, n - k))] + O(n) \]

\[= \sum_{k=1}^{n} E[X_k] E[T(\max(k - 1, n - k))] + O(n) \]

\[= \sum_{k=1}^{n} \frac{1}{n} E[T(\max(k - 1, n - k))] + O(n) \]
Expected Running Time

\[E[T(n)] \leq \sum_{k=[n/2]}^{n} \frac{2}{n} E[T(k)] + O(n) \]

One can prove by induction that

\[E[T(n)] = O(n). \]