The Birthday Problem

Andreas Klappenecker
The Birthday Problem

What is the probability p_{uni} that among a group of m people, at least two share the same birthday?
Solution

Let’s solve the problem for arbitrary planets. Let’s assume that the \(m \) people live on a planet that has \(n \) days per year. Then

\[
\frac{n(n-1) \cdots (n-m+1)}{n^m}
\]

is the probability that no two share a birthday, so

\[
p_{\text{uni}} = 1 - \frac{n(n-1) \cdots (n-m+1)}{n^m} = 1 - \prod_{i=1}^{m-1} \left(1 - \frac{i}{n}\right),
\]

assuming that \(m \leq n \) and the birthdays are independent and uniformly distributed.
Since $1-x \leq \exp(-x)$ holds for all real numbers x, we have

$$p_{\text{uni}} = 1 - \prod_{i=1}^{m-1} \left(1 - \frac{i}{n} \right) \geq 1 - \exp \left(- \sum_{i=1}^{m-1} \frac{i}{n} \right) = 1 - \exp \left(- \frac{(m-1)m}{2n} \right).$$
Consequence

Therefore, if we consider \(m \geq \frac{1}{2} \left(1 + \sqrt{1 - 8n \ln \delta} \right) \) people, where \(\delta \) is a real number in the range \(0 < \delta \leq 1 \), then the probability \(p_{uni} \) that at least two of them have a common birthday satisfies \(p_{uni} \geq 1 - \delta \). For example, when \(n = 365 \), we have

\[
\begin{array}{c|cccc}
 m & 23 & 42 & 59 & 72 \\
 \hline
 p_{uni} & 0.5 & 0.9 & 0.99 & 0.999
\end{array}
\]
The Flaw

There are fewer births on weekends than during the week.
There are fewer births on July 4 than on other days in July.
There are significant seasonal variations.

⇒ Birthdays are not uniformly distributed.
Nonuniform Birthday Problem

Let p_k denote the probability that a person is born on the k-th day of the year, where $1 \leq k \leq n$. Then the probability p_{nu} that among m people at least two have the same birthday using the distribution (p_1, p_2, \ldots, p_n) of birthdays is given by

$$p_{nu} = 1 - e_m(p_1, p_2, \ldots, p_n),$$

where e_m denotes the m-th elementary symmetric function,

$$e_m(x_1, \ldots, x_n) = \sum_{1 \leq j_1 < j_2 < \cdots < j_m \leq n} x_{j_1} x_{j_2} \cdots x_{j_m}.$$
Any probability distribution majorizes the uniform distribution,

\[(1/n, 1/n, \ldots, 1/n) \prec (p_1, p_2, \ldots, p_n),\]

which means that the sum of the \(k \) largest probabilities in \(\{p_1, \ldots, p_n\} \) is at least \(k/n \) for all \(k \) in the range \(1 \leq k \leq n \). Since the elementary symmetric functions are Schur-concave (meaning that they are monotonically decreasing with respect to the relation \(\prec \)), it follows that \(e_m(1/n, 1/n, \ldots, 1/n) \geq e_m(p_1, p_2, \ldots, p_n) \).
Therefore, we can conclude that

\[p_{\text{uni}} = 1 - \frac{n(n - 1) \cdots (n - m + 1)}{n^m} \]
\[= 1 - e_m(1/n, 1/n, \ldots, 1/n) \]
\[\leq 1 - e_m(p_1, p_2, \ldots, p_n) = p_{\text{nu}}. \]
Relation

One can show the following relation between uniform and nonuniform distribution case:

\[p_{\text{uni}} = 1 - \frac{n(n - 1) \cdots (n - m + 1)}{n^m} \leq 1 - e_m(1/n, 1/n, \ldots, 1/n) = p_{\text{nu}}, \]

as \(e_m \) is a so-called Schur-concave function.
References

J. Buchmann, Introduction to Cryptography, Springer, 2004

J. Michael Steele, The Cauchy Schwarz Master Class, Cambridge University Press, 2004