The Birthday Problem

Andreas Klappenecker

The Birthday Problem

What is the probability p_{uni} that among a group of m people, at least two share the same birthday?

Solution

Let's solve the problem for arbitrary planets. Let's assume that the m people live on a planet that has n days per year. Then

$$\frac{n(n-1)\cdots(n-m+1)}{n^m}$$

is the probability that no two share a birthday, so

$$p_{uni} = 1 - \frac{n(n-1)\cdots(n-m+1)}{n^m} = 1 - \prod_{i=1}^{m-1} \left(1 - \frac{i}{n}\right),$$

assuming that m <= n and the birthdays are independent and uniformly distributed.

Lower Bound

Since $1-x \le \exp(-x)$ holds for all real numbers x, we have

$$p_{uni} = 1 - \prod_{i=1}^{m-1} \left(1 - \frac{i}{n} \right)$$

$$\geq 1 - \exp\left(-\sum_{i=1}^{m-1} \frac{i}{n} \right) = 1 - \exp\left(-\frac{(m-1)m}{2n} \right).$$

Consequence

Therefore, if we consider $m \ge \frac{1}{2} \left(1 + \sqrt{1 - 8n \ln \delta} \right)$ people, where δ is a real number in the range $0 < \delta \le 1$, then the probability p_{uni} that at least two of them have a common birthday satisfies $p_{uni} \ge 1 - \delta$. For example, when n = 365, we have

m				72
Puni	0.5	0.9	0.99	0.999

The Flaw

There are fewer births on weekends than during the week.

There are fewer births on July 4 than on other days in July.

There are significant seasonal variations.

=> Birthdays are not uniformly distributed.

Nonuniform Birthday Problem

Let p_k denote the probability that a person is born on the k-th day of the year, where $1 \le k \le n$. Then the probability p_{nu} that among m people at least two have the same birthday using the distribution (p_1, p_2, \ldots, p_n) of birthdays is given by

$$p_{nu} = 1 - e_m(p_1, p_2, ..., p_n),$$

where $e_{\rm m}$ denotes the m-th elementary symmetric function,

$$e_{m}(x_{1},...,x_{n}) = \sum_{1 \leq j_{1} < j_{2} < \cdots < j_{m} \leq n} x_{j_{1}}x_{j_{2}} \cdots x_{j_{m}}.$$

Relation

Any probability distribution majorizes the uniform distribution,

$$(1/n, 1/n, ..., 1/n) \prec (p_1, p_2, ..., p_n),$$

which means that the sum of the k largest probabilities in $\{p_1, \ldots, p_n\}$ is at least k/n for all k in the range $1 \le k \le n$. Since the elementary symmetric functions are Schur-concave (meaning that they are monotonically decreasing with respect to the relation \prec), it follows that $e_m(1/n, 1/n, \ldots, 1/n) \ge e_m(p_1, p_2, \ldots, p_n)$.

Relation

Therefore, we can conclude that

$$p_{uni} = 1 - \frac{n(n-1)\cdots(n-m+1)}{n^m}$$

$$= 1 - e_m(1/n, 1/n, ..., 1/n)$$

$$\leq 1 - e_m(p_1, p_2, ..., p_n) = p_{nu}.$$

Relation

One can show the following relation between uniform and nonuniform distribution case:

$$p_{uni} = 1 - \frac{n(n-1)\cdots(n-m+1)}{n^m}$$

$$= 1 - e_m(1/n, 1/n, ..., 1/n)$$

$$\leq 1 - e_m(p_1, p_2, ..., p_n) = p_{nu},$$

as $e_{\rm m}$ is a so-called Schur-concave function.

References

- J. Buchmann, Introduction to Cryptography, Springer, 2004
- J. Michael Steele, The Cauchy Schwarz Master Class, Cambridge University Press, 2004