Sorting Lower Bound

Andreas Klappenecker based on slides by Prof. Welch

Insertion Sort Review

How it works:

- incrementally build up longer and longer prefix of the array of keys that is in sorted order
- take the current key, find correct place in sorted prefix, and shift to make room to insert it
- Finding the correct place relies on comparing current key to keys in sorted prefix
- Worst-case running time is $\Theta\left(n^{2}\right)$

Insertion Sort Demo

- http://sorting-algorithms.com

Heapsort Review

How it works:

- put the keys in a heap data structure
- repeatedly remove the min from the heap
- Manipulating the heap involves comparing keys to each other
- Worst-case running time is $\Theta(n \log n)$

Heapsort Demo

- http://www.sorting-algorithms.com

Mergesort Review

How it works:

- split the array of keys in half
recursively sort the two halves
- merge the two sorted halves
- Merging the two sorted halves involves comparing keys to each other
- Worst-case running time is $\Theta(n \log n)$

Mergesort Demo

- http://www.sorting-algorithms.com

Quicksort Review

- How it works:
- choose one key to be the pivot
" partition the array of keys into those keys < the pivot and those \geq the pivot
- recursively sort the two partitions
- Partitioning the array involves comparing keys to the pivot
- Worst-case running time is $\Theta\left(n^{2}\right)$

Quicksort Demo

- http://www.sorting-algorithms.com

Comparison-Based Sorting

- All these algorithms are comparison-based
- the behavior depends on relative values of keys, not exact values
- behavior on [1,3,2,4] is same as on [9,25,23,99]
- Fastest of these algorithms was $O(n \log n)$.
- We will show that's the best you can get with comparison-based sorting.

Decision Tree

- Consider any comparison based sorting algorithm
- Represent its behavior on all inputs of a fixed size with a decision tree
- Each tree node corresponds to the execution of a comparison
- Each tree node has two children, depending on whether the parent comparison was true or false
- Each leaf represents correct sorted order for that path

Decision Tree Diagram

first comparison:
check if $a_{i} \leq a_{j}$
YES
second comparison if $a_{i} \leq a_{j}$: check if
$a_{k} \leq a_{l}$
YES
third comparison
if $a_{i} \leq a_{j}$ and $a_{k} \leq a_{l}$: check if $a_{x} \leq a_{y}$

Insertion Sort

for $\mathrm{j}:=2$ to n to
 $$
\text { key }:=a[j]
$$
 $$
i:=j-1
$$
 $$
\text { while } \mathrm{i}>0 \text { and } \mathrm{a}[\mathrm{i}]>\text { key do // insert in prev. }
$$
 $$
a[i+1]:=a[i]
$$
 $$
i:=i-1
$$
 endwhile
 $a[i+1]:=$ key endfor

Insertion Sort for $n=3$

Insertion Sort for $n=3$

How Many Leaves?

- Must be at least one leaf for each permutation of the input
- otherwise there would be a situation that was not correctly sorted
- Number of permutations of n keys is $n!$.
- Idea: since there must be a lot of leaves, but each decision tree node only has two children, tree cannot be too shallow
- depth of tree is a lower bound on running time

Key Lemma

Height of a binary tree with n ! leaves is $\Omega(n \log n)$.

Proof: The maximum number of leaves in a binary
tree with height h is 2^{h}.

2^{1} leaves $h=2,2^{2}$ leaves

$h=3,2^{3}$ leaves

Proof of Lemma

Let h be the height of decision tree, so it has at most 2^{h} leaves.

The actual number of leaves is $n!$, hence

$$
\begin{aligned}
2^{h} & \geq n! \\
h & \geq \log (n!) \\
& =\log (n(n-1)(n-1) \ldots(2)(1)) \\
& \geq(n / 2) \log (n / 2) \quad \text { by algebra } \\
& =\Omega(n \log n)
\end{aligned}
$$

Finishing Up

- Any binary tree with n ! leaves has height $\Omega(n \log n)$.
- Decision tree for any c-b sorting alg on n keys has height $\Omega(n \log n)$.
- Any c-b sorting alg has at least one execution with $\Omega(n \log n)$ comparisons
- Any c-b sorting alg has $\Omega(n \log n)$ worst-case running time.

