Sorting Lower Bound

Andreas Klappenecker
based on slides by Prof. Welch
Insertion Sort Review

- **How it works:**
 - incrementally build up longer and longer prefix of the array of keys that is in sorted order
 - take the current key, find correct place in sorted prefix, and shift to make room to insert it

- Finding the correct place relies on comparing current key to keys in sorted prefix

- Worst-case running time is $\Theta(n^2)$
Insertion Sort Demo

- http://sorting-algorithms.com
Heapsort Review

- How it works:
 - put the keys in a heap data structure
 - repeatedly remove the min from the heap
- Manipulating the heap involves comparing keys to each other
- Worst-case running time is $\Theta(n \log n)$
Heapsort Demo

- http://www.sorting-algorithms.com
Mergesort Review

- How it works:
 - split the array of keys in half
 - recursively sort the two halves
 - merge the two sorted halves

- Merging the two sorted halves involves comparing keys to each other

- Worst-case running time is $\Theta(n \log n)$
Mergesort Demo

http://www.sorting-algorithms.com
Quicksort Review

- How it works:
 - choose one key to be the pivot
 - partition the array of keys into those keys < the pivot and those ≥ the pivot
 - recursively sort the two partitions

- Partitioning the array involves comparing keys to the pivot

- Worst-case running time is Θ(n²)
Quicksort Demo

- http://www.sorting-algorithms.com
Comparison-Based Sorting

- All these algorithms are comparison-based
 - the behavior depends on relative values of keys, not exact values
 - behavior on \([1,3,2,4]\) is same as on \([9,25,23,99]\)
- Fastest of these algorithms was \(O(n \log n)\).
- We will show that's the best you can get with comparison-based sorting.
Decision Tree

- Consider any comparison based sorting algorithm
- Represent its behavior on all inputs of a fixed size with a decision tree
- Each tree node corresponds to the execution of a comparison
- Each tree node has two children, depending on whether the parent comparison was true or false
- Each leaf represents correct sorted order for that path
Decision Tree Diagram

first comparison:
check if $a_i \leq a_j$

YES

second comparison
if $a_i \leq a_j$: check if
$a_k \leq a_l$

YES

third comparison
if $a_i \leq a_j$ and $a_k \leq a_l$:
check if $a_x \leq a_y$

YES

second comparison
if $a_i > a_j$: check if
$a_m \leq a_p$

YES

NO

NO

NO
Insertion Sort

for j := 2 to n to
 key := a[j]
 i := j-1
 while i > 0 and a[i] > key do // insert in prev.
 a[i+1] := a[i]
 i := i -1
 endwhile
 a[i+1] := key
endfor
Insertion Sort for \(n = 3 \)

- **YES**
 - \(a_1 \leq a_2 \) ?
 - **YES**
 - \(a_2 \leq a_3 \) ?
 - **YES**
 - \(a_1 a_2 a_3 \)
 - **NO**
 - \(a_1 a_3 a_2 \)
 - **NO**
 - \(a_1 \leq a_3 \) ?
 - **YES**
 - \(a_2 a_1 a_3 \)
 - **NO**
 - \(a_2 a_3 a_1 \)

- **NO**
 - \(a_1 \leq a_2 \) ?
 - **NO**
 - \(a_2 \leq a_3 \) ?
 - **YES**
 - \(a_2 a_1 a_3 \)
 - **NO**
 - \(a_2 a_3 a_1 \)
 - **YES**
 - \(a_1 a_2 a_3 \)

\(a_1 \leq a_2 \) ?
\(a_2 \leq a_3 \) ?
\(a_1 \leq a_3 \) ?
\(a_2 \leq a_3 \)?
Insertion Sort for $n = 3$

- $a_1 \leq a_2$?
 - YES: $a_1 a_2 a_3$
 - NO: $a_2 \leq a_3$?
 - YES: $a_1 \leq a_3$?
 - YES: $a_1 a_3 a_2$
 - NO: $a_3 a_1 a_2$
 - NO: $a_2 \leq a_3$?
 - YES: $a_2 a_3 a_1$
 - NO: $a_3 a_2 a_1$
How Many Leaves?

- Must be at least one leaf for each permutation of the input
 - otherwise there would be a situation that was not correctly sorted

- Number of permutations of \(n \) keys is \(n! \).

- Idea: since there must be a lot of leaves, but each decision tree node only has two children, tree cannot be too shallow
 - depth of tree is a lower bound on running time
Key Lemma

Height of a binary tree with $n!$ leaves is $\Omega(n \log n)$.

Proof: The maximum number of leaves in a binary tree with height h is 2^h.

$h = 1$, 2^1 leaves

$h = 2$, 2^2 leaves

$h = 3$, 2^3 leaves
Proof of Lemma

- Let h be the height of decision tree, so it has at most 2^h leaves.

- The actual number of leaves is $n!$, hence

\[2^h \geq n!\]

\[h \geq \log(n!)
= \log(n(n-1)(n-1)\ldots(2)(1))
\geq \frac{n}{2}\log(n/2) \quad \text{by algebra}
= \Omega(n \log n)\]
Finishing Up

- Any binary tree with $n!$ leaves has height $\Omega(n \log n)$.

- Decision tree for any c-b sorting alg on n keys has height $\Omega(n \log n)$.

- Any c-b sorting alg has at least one execution with $\Omega(n \log n)$ comparisons

- Any c-b sorting alg has $\Omega(n \log n)$ worst-case running time.