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Subsequences

Suppose you have a sequence X = < x1,x2,…,xm of elements over a 
finite set S.


A sequence Z = < z1,z2,…,zk> over S is called a subsequence of X if 
and only if it can be obtained from X by deleting elements.


Put differently, there exist indices i1<i2 <…<ik such that 


   za = xia 


for all a in the range 1<= a <= k.  



Common Subsequences

Suppose that X and Y are two sequences over a set S. 


We say that Z is a common subsequence of X and Y if and only if 


• Z is a subsequence of X


• Z is a subsequence of Y



The Longest Common 
Subsequence Problem

Given two sequences X and Y over a set S, the longest 
common subsequence problem asks to find a common 
subsequence of X and Y that is of maximal length. 



Naïve Solution

Let X be a sequence of length m,


and Y a sequence of length n.


Check for every subsequence of X whether it is a subsequence of Y, 
and return the longest common subsequence found. 


There are 2m subsequences of X. Testing a sequences whether or not 
it is a subsequence of Y takes O(n) time. Thus, the naïve algorithm 
would take O(n2m) time.



Dynamic Programming

Let us try to develop a dynamic programming solution to the LCS 
problem.



Prefix

Let X = < x1,x2,…,xm> be a sequence.  


!

We denote by Xi the sequence 


  Xi = < x1,x2,…,xi> 


and call it the ith prefix of X. 



LCS Notation

Let X and Y be sequences. 


!

We denote by LCS(X, Y) the set of longest common 
subsequences of X and Y. 



Optimal Substructure

Let X = < x1,x2,…,xm>


and Y = < y1,y2,…,yn>  be two sequences.


Let Z = < z1,z2,…,zk> is any LCS of X and Y.


a) If xm = yn then certainly xm = yn = zk


 and Zk-1 is in LCS(Xm-1 , Yn-1)



Optimal Substructure (2)

Let X = < x1,x2,…,xm>


and Y = < y1,y2,…,yn>  be two sequences.


Let Z = < z1,z2,…,zk> is any LCS of X and Y


b) If xm <> yn then xm <> zk implies that Z is in LCS(Xm-1 , Y)


c) If xm <> yn then yn <> zk implies that Z is in LCS(X, Yn-1)



Overlapping Subproblems

If xm = yn  then we solve the subproblem to find an element in 
LCS(Xm-1 , Yn-1 ) and append xm


If xm <> yn  then we solve the two subproblems of finding elements in 


  LCS(Xm-1 , Yn ) and LCS(Xm , Yn-1 ) 


and choose the longer one.  



Recursive Solution

Let X and Y be sequences. 


Let  c[i,j] be the length of an element in LCS(Xi, Yj). 


!

    


!

           


c[i,j] = 



Dynamic Programming Solution

To compute length of an element in LCS(X,Y) with X of length m and Y of 
length n, we do the following:


•Initialize first row and first column of c with 0. 


•Calculate c[1,j] for 1 <= j <= n, 


•               c[2,j] for 1 <= j <= n             … 


•Return c[m,n] 


•Complexity O(mn). 



Dynamic Programming Solution (2)

How can we get an actual longest common subsequence? 


!

Store in addition to the array c an array b pointing to the optimal 
subproblem chosen when computing c[i,j]. 



Animation

http://wordaligned.org/articles/longest-common-subsequence
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LCS(X,Y)  

m ← length[X] 

n ← length[Y] 

for i ← 1 to m do  
   c[i,0] ← 0 

for j ← 1 to n do  
   c[0,j] ← 0



LCS(X,Y)  

for i ← 1 to m do  
 for j ← 1 to n do  
    if xi = yj  
      c[i, j] ← c[i-1, j-1]+1  
      b[i, j] ← “D”    
    else  

   if c[i-1, j] ≥ c[i, j-1]  
            c[i, j] ← c[i-1, j]  
            b[i, j] ← “U”  
       else 
   c[i, j] ← c[i, j-1]  
            b[i, j] ← “L” 



Greedy Algorithms

!

!

There exists a greedy solution to this problem that can be 
advantageous when the size of the alphabet S is small.


!

 


