Longest Common Subsequence
Andreas Klappenecker
Subsequences

Suppose you have a sequence $X = < x_1, x_2, ..., x_m $ of elements over a finite set S.

A sequence $Z = < z_1, z_2, ..., z_k >$ over S is called a \textbf{subsequence} of X if and only if it can be obtained from X by deleting elements.

Put differently, there exist indices $i_1 < i_2 < ... < i_k$ such that

$$ z_a = x_{i_a} $$

for all a in the range $1 \leq a \leq k$.
Common Subsequences

Suppose that X and Y are two sequences over a set S.
We say that Z is a common subsequence of X and Y if and only if
- Z is a subsequence of X
- Z is a subsequence of Y
The Longest Common Subsequence Problem

Given two sequences X and Y over a set S, the longest common subsequence problem asks to find a common subsequence of X and Y that is of maximal length.
Naïve Solution

Let X be a sequence of length m,
and Y a sequence of length n.

Check for every subsequence of X whether it is a subsequence of Y,
and return the longest common subsequence found.

There are 2^m subsequences of X. Testing a sequence whether or not
it is a subsequence of Y takes $O(n)$ time. Thus, the naïve algorithm
would take $O(n2^m)$ time.
Dynamic Programming

Let us try to develop a dynamic programming solution to the LCS problem.
Let $X = <x_1,x_2,\ldots,x_m>$ be a sequence.

We denote by X_i the sequence

$X_i = <x_1,x_2,\ldots,x_i>$

and call it the i^{th} prefix of X.
LCS Notation

Let X and Y be sequences.

We denote by $\text{LCS}(X, Y)$ the set of longest common subsequences of X and Y.
Optimal Substructure

Let $X = <x_1, x_2, \ldots, x_m>$

and $Y = <y_1, y_2, \ldots, y_n>$ be two sequences.

Let $Z = <z_1, z_2, \ldots, z_k>$ is any LCS of X and Y.

a) If $x_m = y_n$ then certainly $x_m = y_n = z_k$

and Z_{k-1} is in $\text{LCS}(X_{m-1}, Y_{n-1})$
Optimal Substructure (2)

Let $X = <x_1, x_2, ..., x_m>$
and $Y = <y_1, y_2, ..., y_n>$ be two sequences.

Let $Z = <z_1, z_2, ..., z_k>$ be any LCS of X and Y

b) If $x_m \neq y_n$ then $x_m \neq z_k$ implies that Z is in $\text{LCS}(X_{m-1}, Y)$

c) If $x_m \neq y_n$ then $y_n \neq z_k$ implies that Z is in $\text{LCS}(X, Y_{n-1})$
Overlapping Subproblems

If $x_m = y_n$ then we solve the subproblem to find an element in $LCS(X_{m-1}, Y_{n-1})$ and append x_m.

If $x_m \neq y_n$ then we solve the two subproblems of finding elements in $LCS(X_{m-1}, Y_n)$ and $LCS(X_m, Y_{n-1})$ and choose the longer one.
Let X and Y be sequences.

Let $c[i,j]$ be the length of an element in LCS(X_i, Y_j).

$$c[i,j] = \begin{cases}
0 & \text{if } i=0 \text{ or } j=0 \\
 c[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } x_i = y_j \\
 \max(c[i,j-1],c[i-1,j]) & \text{if } i,j>0 \text{ and } x_i \neq y_j
\end{cases}$$
Dynamic Programming Solution

To compute length of an element in LCS(X,Y) with X of length m and Y of length n, we do the following:

• Initialize first row and first column of c with 0.
• Calculate c[1,j] for 1 \leq j \leq n,

 • c[2,j] for 1 \leq j \leq n

 • Return c[m,n]
• Complexity O(mn).
How can we get an actual longest common subsequence?

Store in addition to the array c an array b pointing to the optimal subproblem chosen when computing $c[i,j]$.
Animation

http://wordaligned.org/articles/longest-common-subsequence
LCS \((X,Y)\)

\[
m \leftarrow \text{length}[X]
\]

\[
n \leftarrow \text{length}[Y]
\]

\[
\text{for } i \leftarrow 1 \text{ to } m \text{ do}
\]
\[
c[i,0] \leftarrow 0
\]

\[
\text{for } j \leftarrow 1 \text{ to } n \text{ do}
\]
\[
c[0,j] \leftarrow 0
\]
for $i \leftarrow 1$ to m do
 for $j \leftarrow 1$ to n do
 if $x_i = y_j$
 $c[i, j] \leftarrow c[i-1, j-1]+1$
 $b[i, j] \leftarrow \text{"D"}$
 else
 if $c[i-1, j] \geq c[i, j-1]$
 $c[i, j] \leftarrow c[i-1, j]$
 $b[i, j] \leftarrow \text{"U"}$
 else
 $c[i, j] \leftarrow c[i, j-1]$
 $b[i, j] \leftarrow \text{"L"}$
Greedy Algorithms

There exists a greedy solution to this problem that can be advantageous when the size of the alphabet S is small.