
Longest Common Subsequence

Andreas Klappenecker

Subsequences

Suppose you have a sequence X = < x1,x2,…,xm of elements over a
finite set S.

A sequence Z = < z1,z2,…,zk> over S is called a subsequence of X if
and only if it can be obtained from X by deleting elements.

Put differently, there exist indices i1<i2 <…<ik such that

 za = xia

for all a in the range 1<= a <= k.

Common Subsequences

Suppose that X and Y are two sequences over a set S.

We say that Z is a common subsequence of X and Y if and only if

• Z is a subsequence of X

• Z is a subsequence of Y

The Longest Common
Subsequence Problem

Given two sequences X and Y over a set S, the longest
common subsequence problem asks to find a common
subsequence of X and Y that is of maximal length.

Naïve Solution

Let X be a sequence of length m,

and Y a sequence of length n.

Check for every subsequence of X whether it is a subsequence of Y,
and return the longest common subsequence found.

There are 2m subsequences of X. Testing a sequences whether or not
it is a subsequence of Y takes O(n) time. Thus, the naïve algorithm
would take O(n2m) time.

Dynamic Programming

Let us try to develop a dynamic programming solution to the LCS
problem.

Prefix

Let X = < x1,x2,…,xm> be a sequence.

!

We denote by Xi the sequence

 Xi = < x1,x2,…,xi>

and call it the ith prefix of X.

LCS Notation

Let X and Y be sequences.

!

We denote by LCS(X, Y) the set of longest common
subsequences of X and Y.

Optimal Substructure

Let X = < x1,x2,…,xm>

and Y = < y1,y2,…,yn> be two sequences.

Let Z = < z1,z2,…,zk> is any LCS of X and Y.

a) If xm = yn then certainly xm = yn = zk

 and Zk-1 is in LCS(Xm-1 , Yn-1)

Optimal Substructure (2)

Let X = < x1,x2,…,xm>

and Y = < y1,y2,…,yn> be two sequences.

Let Z = < z1,z2,…,zk> is any LCS of X and Y

b) If xm <> yn then xm <> zk implies that Z is in LCS(Xm-1 , Y)

c) If xm <> yn then yn <> zk implies that Z is in LCS(X, Yn-1)

Overlapping Subproblems

If xm = yn then we solve the subproblem to find an element in
LCS(Xm-1 , Yn-1) and append xm

If xm <> yn then we solve the two subproblems of finding elements in

 LCS(Xm-1 , Yn) and LCS(Xm , Yn-1)

and choose the longer one.

Recursive Solution

Let X and Y be sequences.

Let c[i,j] be the length of an element in LCS(Xi, Yj).

!

!

c[i,j] =

Dynamic Programming Solution

To compute length of an element in LCS(X,Y) with X of length m and Y of
length n, we do the following:

•Initialize first row and first column of c with 0.

•Calculate c[1,j] for 1 <= j <= n,

• c[2,j] for 1 <= j <= n …

•Return c[m,n]

•Complexity O(mn).

Dynamic Programming Solution (2)

How can we get an actual longest common subsequence?

!

Store in addition to the array c an array b pointing to the optimal
subproblem chosen when computing c[i,j].

Animation

http://wordaligned.org/articles/longest-common-subsequence

http://wordaligned.org/articles/longest-common-subsequence

LCS(X,Y)  

m ← length[X]

n ← length[Y]

for i ← 1 to m do  
 c[i,0] ← 0

for j ← 1 to n do  
 c[0,j] ← 0

LCS(X,Y)  

for i ← 1 to m do  
 for j ← 1 to n do  
 if xi = yj  
 c[i, j] ← c[i-1, j-1]+1  
 b[i, j] ← “D”  
 else

 if c[i-1, j] ≥ c[i, j-1]  
 c[i, j] ← c[i-1, j]  
 b[i, j] ← “U”  
 else 
 c[i, j] ← c[i, j-1]  
 b[i, j] ← “L”

Greedy Algorithms

!

!

There exists a greedy solution to this problem that can be
advantageous when the size of the alphabet S is small.

!

