Longest Common Subsequence

Andreas Klappenecker

Subsequences

Suppose you have a sequence $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right.$ of elements over a finite set S .

A sequence $Z=\left\langle Z_{1}, z_{2}, \ldots, Z_{k}\right\rangle$ over S is called a subsequence of X if and only if it can be obtained from X by deleting elements.

Put differently, there exist indices $i_{1}<i_{2}<. . .<i_{k}$ such that

$$
z_{a}=x_{i a}
$$

for all a in the range $1<=a<=k$.

Common Subsequences

Suppose that X and Y are two sequences over a set S.
We say that Z is a common subsequence of X and Y if and only if

- Z is a subsequence of X
- Z is a subsequence of Y

The Longest Common Subsequence Problem

Given two sequences X and Y over a set S, the longest common subsequence problem asks to find a common subsequence of X and Y that is of maximal length.

Naïve Solution

Let X be a sequence of length m, and Y a sequence of length n.

Check for every subsequence of X whether it is a subsequence of Y, and return the longest common subsequence found.

There are 2^{m} subsequences of X. Testing a sequences whether or not it is a subsequence of Y takes $O(n)$ time. Thus, the naïve algorithm would take $O\left(n 2^{m}\right)$ time.

Dynamic Programming

Let us try to develop a dynamic programming solution to the LCS problem.

Prefix

Let $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ be a sequence.

We denote by X_{i} the sequence

$$
x_{i}=\left\langle x_{1}, x_{2}, \ldots, x_{i}\right\rangle
$$

and call it the $i^{\text {th }}$ prefix of X.

LCS Notation

Let X and Y be sequences.

We denote by $\operatorname{LCS}(X, Y)$ the set of longest common subsequences of X and Y.

Optimal Substructure

Let $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ and $Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ be two sequences.

Let $Z=\left\langle Z_{1}, Z_{2}, \ldots, Z_{k}\right\rangle$ is any LCS of X and Y.
a) If $x_{m}=y_{n}$ then certainly $x_{m}=y_{n}=z_{k}$ and Z_{k-1} is in $\operatorname{LCS}\left(X_{m-1}, Y_{n-1}\right)$

Optimal Substructure (2)

Let $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ and $Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ be two sequences.

Let $Z=\left\langle Z_{1}, Z_{2}, \ldots, Z_{k}\right\rangle$ is any LCS of X and Y
b) If $x_{m}<>y_{n}$ then $x_{m}<>z_{k}$ implies that Z is in $\operatorname{LCS}\left(X_{m-1}, Y\right)$
c) If $X_{m}<>y_{n}$ then $y_{n}<>Z_{k}$ implies that Z is in $\operatorname{LCS}\left(X, Y_{n-1}\right)$

Overlapping Subproblems

If $x_{m}=y_{n}$ then we solve the subproblem to find an element in $\operatorname{LCS}\left(X_{m-1}, Y_{n-1}\right)$ and append X_{m}

If $x_{m}<>y_{n}$ then we solve the two subproblems of finding elements in

$$
\operatorname{LCS}\left(X_{m-1}, Y_{n}\right) \text { and } \operatorname{LCS}\left(X_{m}, Y_{n-1}\right)
$$

and choose the longer one.

Recursive Solution

Let X and Y be sequences.
Let $c[i, j]$ be the length of an element in $\operatorname{LCS}\left(X_{i}, Y_{j}\right)$.

Dynamic Programming Solution

To compute length of an element in $\operatorname{LCS}(X, Y)$ with X of length m and Y of length n, we do the following:
-Initialize first row and first column of c with 0.

- Calculate $c[1, j]$ for $1<=\mathrm{j}<=\mathrm{n}$,

$$
c[2, j] \text { for } 1<=j<=n
$$

- Return c[m,n]
-Complexity $O(\mathrm{mn})$.

Dynamic Programming Solution (2)

How can we get an actual longest common subsequence?

Store in addition to the array c an array b pointing to the optimal subproblem chosen when computing c[i,j].

Animation

http://wordaligned.org/articles/longest-common-subsequence

$\operatorname{LCS}(X, Y)$

$$
\begin{aligned}
& m \leftarrow \text { length }[X] \\
& n \leftarrow \text { length }[Y] \\
& \text { for } i \leftarrow 1 \text { to } m \text { do } \\
& c[i, 0] \leftarrow 0 \\
& \text { for } j \leftarrow 1 \text { to } n \text { do } \\
& c[0, j] \leftarrow 0
\end{aligned}
$$

$\operatorname{LCS}(X, Y)$

for $i \leftarrow 1$ to m do
for ${ }_{i}{ }_{\mathbf{j}} \underset{\mathrm{x}}{\leftarrow} \stackrel{1}{=}$ to n do

else

Greedy Algorithms

There exists a greedy solution to this problem that can be advantageous when the size of the alphabet S is small.

