Longest Common Subsequence

Andreas Klappenecker

Subsequences

Suppose you have a sequence $X = \langle x_1, x_2, ..., x_m \rangle$ of elements over a finite set S.

A sequence $Z = \langle z_1, z_2, ..., z_k \rangle$ over S is called a subsequence of X if and only if it can be obtained from X by deleting elements.

Put differently, there exist indices $i_1 < i_2 < ... < i_k$ such that

 $Z_a = X_{ia}$

for all a in the range $1 \le a \le k$.

Common Subsequences

Suppose that X and Y are two sequences over a set S. We say that Z is a common subsequence of X and Y if and only if

- Z is a subsequence of X
- Z is a subsequence of Y

The Longest Common Subsequence Problem

Given two sequences X and Y over a set S, the longest common subsequence problem asks to find a common subsequence of X and Y that is of maximal length.

Naïve Solution

Let X be a sequence of length m, and Y a sequence of length n.

Check for every subsequence of X whether it is a subsequence of Y, and return the longest common subsequence found.

There are 2^m subsequences of X. Testing a sequences whether or not it is a subsequence of Y takes O(n) time. Thus, the naïve algorithm would take $O(n2^m)$ time.

Dynamic Programming

Let us try to develop a dynamic programming solution to the LCS problem.

Prefix

Let $X = \langle x_1, x_2, ..., x_m \rangle$ be a sequence.

We denote by X_i the sequence

 $X_{i} = \langle X_{1}, X_{2}, ..., X_{i} \rangle$

and call it the ith prefix of X.

LCS Notation

Let X and Y be sequences.

We denote by LCS(X, Y) the set of longest common subsequences of X and Y.

Optimal Substructure

Let $X = \langle X_1, X_2, ..., X_m \rangle$

and $Y = \langle y_1, y_2, ..., y_n \rangle$ be two sequences.

Let $Z = \langle z_1, z_2, ..., z_k \rangle$ is any LCS of X and Y.

a) If $x_m = y_n$ then certainly $x_m = y_n = z_k$ and Z_{k-1} is in LCS(X_{m-1} , Y_{n-1})

Optimal Substructure (2)

Let $X = \langle X_1, X_2, ..., X_m \rangle$

and $Y = \langle y_1, y_2, ..., y_n \rangle$ be two sequences.

Let $Z = \langle z_1, z_2, ..., z_k \rangle$ is any LCS of X and Y

b) If $x_m \leftrightarrow y_n$ then $x_m \leftrightarrow z_k$ implies that Z is in LCS(X_{m-1} , Y) c) If $x_m \leftrightarrow y_n$ then $y_n \leftrightarrow z_k$ implies that Z is in LCS(X, Y_{n-1})

Overlapping Subproblems

If $x_m = y_n$ then we solve the subproblem to find an element in $LCS(X_{m-1}, Y_{n-1})$ and append x_m

If $x_m <> y_n$ then we solve the two subproblems of finding elements in $LCS(X_{m-1}, Y_n)$ and $LCS(X_m, Y_{n-1})$ and choose the longer one.

Recursive Solution

Let X and Y be sequences.

Let c[i,j] be the length of an element in LCS(X_i, Y_j).

0

• if i=0 or j=0

c[i-1,j-1]+1 • if i,j>0 and x_i = y_j

max(c[i,j-1],c[i-1,j]) • if i,j>0 and x_i <> y_j

c[i,j] =

Dynamic Programming Solution

...

To compute length of an element in LCS(X,Y) with X of length m and Y of length n, we do the following:

- Initialize first row and first column of c with O.
- •Calculate c[1,j] for $1 \le j \le n$,

c[2,j] for 1 <= j <= n

•Return c[m,n]

•

Complexity O(mn).

Dynamic Programming Solution (2)

How can we get an actual longest common subsequence?

Store in addition to the array c an array b pointing to the optimal subproblem chosen when computing c[i,j].

Animation

http://wordaligned.org/articles/longest-common-subsequence

LCS(X,Y)

 $m \leftarrow length[X]$ $n \leftarrow length[Y]$ for i < 1 to m do $c[i,0] \leftarrow 0$ for j < 1 to n do $c[0,j] \leftarrow 0$

LCS(X,Y)

for $i \leftarrow 1$ to m do for $j \leftarrow 1$ to n do if $x_i = y_j$ $C[i, j] \leftarrow C[i-1, j-1]+1$ $b[i, j] \leftarrow D''$ else if $c[i-1, j] \ge c[i, j-1]$ $c[i, j] \leftarrow c[i-1, j]$ $b[i, j] \leftarrow "U"$ else c[i, j] ← c[i, j-1] b[i, j] ← ``L″

Greedy Algorithms

There exists a greedy solution to this problem that can be advantageous when the size of the alphabet S is small.

