Dynamic Programming:
The Matrix Chain Algorithm

Andreas Klappenecker

[partially based on slides by Prof. Welch]
Matrix Chain Problem

Suppose that we want to multiply a sequence of rectangular matrices. In which order should we multiply?

\[A \times (B \times C) \quad \text{or} \quad (A \times B) \times C \]
Matrices

An $n \times m$ matrix A over the real numbers is a rectangular array of nm real numbers that are arranged in n rows and m columns.

For example, a 3×2 matrix A has 6 entries

$A = \begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22} \\
 a_{31} & a_{32}
\end{pmatrix}$

where each of the entries a_{ij} is e.g. a real number.
Matrix Multiplication

Let A be an $n \times m$ matrix

B an $m \times p$ matrix

The product of A and B is $n \times p$ matrix AB whose (i,j)-th entry is

$$\sum_{k=1}^{m} a_{ik} b_{kj}$$

In other words, we multiply the entries of the i-th row of A with the entries of the j-th column of B and add them up.
Matrix Multiplication

\[x_{1,2} = (a_{1,1}, a_{1,2}) \cdot (b_{1,2}, b_{2,2}) \]
\[= a_{1,1}b_{1,2} + a_{1,2}b_{2,2} \]
\[x_{3,3} = (a_{3,1}, a_{3,2}) \cdot (b_{1,3}, b_{2,3}) \]
\[= a_{3,1}b_{1,3} + a_{3,2}b_{2,3}. \]
Complexity of Matrix Multiplication

Let A be an $n \times m$ matrix, B an $m \times p$ matrix. Thus, AB is an $n \times p$ matrix. Computing the product AB takes

- nmp scalar multiplications
- $n(m-1)p$ scalar additions

for the standard matrix multiplication algorithm.
Matrix multiplication is associative, meaning that \((AB)C = A(BC)\). Therefore, we have a choice in forming the product of several matrices.

What is the least expensive way to form the product of several matrices if the naïve matrix multiplication algorithm is used?

[We use the number of scalar multiplications as cost.]
Why Order Matters

Suppose we have 4 matrices:

A: 30 x 1
B: 1 x 40
C: 40 x 10
D: 10 x 25

\((AB)(CD)\) : requires 41,200 scalar multiplications

\((A(BC)D)\) : requires 1400 scalar multiplications
Matrix Chain Order Problem

Given matrices A_1, A_2, \ldots, A_n,

where A_i is a $d_{i-1} \times d_i$ matrix.

[1] What is minimum number of scalar multiplications required to compute the product $A_1 \cdot A_2 \cdot \ldots \cdot A_n$?

[2] What order of matrix multiplications achieves this minimum?

We focus on question [1], and sketch an answer to [2].
A Possible Solution

Try all possibilities and choose the best one.

Drawback: There are too many of them (exponential in the number of matrices to be multiplied)

We need to be smarter: Let’s try dynamic programming!
Step 1: Develop a Recursive Solution

• Define $M(i,j)$ to be the minimum number of multiplications needed to compute $A_i \cdot A_{i+1} \cdots A_j$

• Goal: Find $M(1,n)$.

• Basis: $M(i,i) = 0$.

• Recursion: How can one define $M(i,j)$ recursively?
Defining $M(i,j)$ Recursively

- Consider all possible ways to split A_i through A_j into two pieces.

- Compare the costs of all these splits:
 - best case cost for computing the product of the two pieces
 - plus the cost of multiplying the two products

- Take the best one

$$M(i,j) = \min_k (M(i,k) + M(k+1,j) + d_{i-1} d_k d_j)$$
Defining $M(i,j)$ Recursively

\[
\begin{align*}
(A_i \cdot \ldots \cdot A_k) \cdot (A_{k+1} \cdot \ldots \cdot A_j) \\
\quad P_1 \\
\quad P_2
\end{align*}
\]

- minimum cost to compute P_1 is $M(i,k)$
- minimum cost to compute P_2 is $M(k+1,j)$
- cost to compute $P_1 \cdot P_2$ is $d_{i-1}d_kd_j$
Step 2: Find Dependencies Among Subproblems

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>n/a</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
</tr>
</tbody>
</table>

GOAL!

computing the pink square requires the purple ones: to the left and below.
Defining the Dependencies

Computing $M(i,j)$ uses

everything in same row to the left:

$M(i,i), M(i,i+1), \ldots, M(i,j-1)$

and everything in same column below:

$M(i,j), M(i+1,j), \ldots, M(j,j)$
Step 3: Identify Order for Solving Subproblems

Recall the dependencies between subproblems just found.

Solve the subproblems (i.e., fill in the table entries) this way:
- go along the diagonal
- start just above the main diagonal
- end in the upper right corner (goal)
Order for Solving Subproblems

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>n/a</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
</tr>
</tbody>
</table>

![Diagram showing the order of subproblems]

M:

1 2 3 4
Pseudocode

for $i := 1$ to n do $M[i,i] := 0$

for $d := 1$ to $n-1$ do // diagonals
 for $i := 1$ to $n-d$ to // rows w/ an entry on d-th diagonal
 $j := i + d$ // column corresp. to row i on d-th diagonal
 $M[i,j] := \infty$
 endfor
 for $k := i$ to $j-1$ to
 $M[i,j] := \min(M[i,j], M[i,k]+M[k+1,j]+d_{i-1,d,k,d}j)$
 endfor
endfor

running time $O(n^3)$

pay attention here to remember actual sequence of mults.
Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1200</td>
<td>700</td>
<td>1400</td>
</tr>
<tr>
<td>2</td>
<td>n/a</td>
<td>0</td>
<td>400</td>
<td>650</td>
</tr>
<tr>
<td>3</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>10,000</td>
</tr>
<tr>
<td>4</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
</tr>
</tbody>
</table>

1: A is 30x1
2: B is 1x40
3: C is 40x10
4: D is 10x25

BxC: 1x40x10
(BxC)xD:
400 + 1x10x25
Bx(CxD): ... + 10,000
Keeping Track of the Order

• It's fine to know the cost of the cheapest order, but what is that cheapest order?

• Keep another array S and update it when computing the minimum cost in the inner loop

• After M and S have been filled in, then call a recursive algorithm on S to print out the actual order
Modified Pseudocode

for i := 1 to n do
 M[i,i] := 0
endfor

for d := 1 to n-1 do // diagonals
 for i := 1 to n-d do // rows w/ an entry on d-th diagonal
 j := i + d // column corresponding to row i on d-th diagonal
 M[i,j] := infinity
 for k := i to j-1 to
 M[i,j] := min(M[i,j], M[i,k]+M[k+1,j]+d_{i-1,i}d_{j,j})
 endfor
 endfor
endfor

keep track of cheapest split point
found so far: between A_k and A_{k+1}
Example

M:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1200</td>
<td>700</td>
<td>1400</td>
</tr>
<tr>
<td>2</td>
<td>n/a</td>
<td>0</td>
<td>400</td>
<td>650</td>
</tr>
<tr>
<td>3</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>10000</td>
</tr>
<tr>
<td>4</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
</tr>
</tbody>
</table>

S:

1: A is 30x1
2: B is 1x40
3: C is 40x10
4: D is 10x25

A × (BCD)
A × ((BC) × D)
A × ((BxC) × D)
Using S to Print Best Ordering

Call Print(S,1,n) to get the entire ordering.

Print(S,i,j):

if i = j then output "A" + i // + is string concat

else

 k := S[i,j]

 output "(" + Print(S,i,k) + Print(S,k+1,j) + ")"