Undecidable Problems
Andreas Klappenecker
Post’s Correspondence Problem

Given: A finite alphabet A, a finite set of pairs (x, y) of strings over the alphabet A.

Goal: Find a string over the alphabet A that can be composed in two different ways:
- by concatenating strings $x_1x_2...x_n$ from the first components
- by concatenating strings $y_1y_2...y_n$ from the second components

of a sequence $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ of the given pairs.
PCP Example 1

Given: Alphabet $A=\{a,b\}$, $P = \{(bab, a), (ab, abb), (a, ba)\}$

Solution: $abbaba$

$x_2 \ x_1 \ x_3 = ab \ || \ bab \ || \ a$

$y_2 \ y_1 \ y_3 = abb \ || \ a \ || \ ba$

Important: You need to select a sequence of pairs from P

Projecting on first components must be the same as projecting on the second components. Reordering is not allowed.
PCP Exercise

Given: Set of pairs $P = \{ (1, 111), (10111,10), (10,0) \}$ over $A=\{0,1\}$

Find a solution to Post's correspondence problem.
Solution

Given: Set of pairs \(P = \{ (1, \, 111), (10111,10), (10,0) \} \) over \(A=\{0,1\} \)

Find a solution to Post's correspondence problem.

Solution: \((2,1,1,3)\)

\[
x_2 \, x_1 \, x_1 \, x_3 = 10111 \, || \, 1 \, || \, 1 \, || \, 10 = 101111110
\]

\[
y_2 \, y_1 \, y_1 \, y_3 = 10 \, || \, 111 \, || \, 111 \, || \, 0 = 101111110
\]
PCP Example

The Post’s correspondence problem with

\[P = \{ (001,0), (01,011), (01,101), (10,001) \} \text{ over } A = \{0,1\} \]

has a solution, but the smallest requires \(n = 66 \) words!
Main Result

Theorem: The Post's correspondence problem is undecidable when the alphabet has at least two elements.

Idea of the proof: Reduce the halting problem onto the Post's correspondence problem. This is often done via an intermediate step, where a RAM machine with a single register is used.
Context Free Grammars

Problem: Is a given context-free grammar G unambiguous?

[A context-free grammar G is unambiguous iff every string s in $L(G)$ has a unique left-most derivation. The reference grammars given for many programming languages are often ambiguous (e.g. dangling else problem). Sometimes formal languages have ambiguous and unambiguous grammars.]

This problem is undecidable. One can reduce the PCP problem to this one.
Example

The regular language \{ \epsilon, a, aa, aaa, aaaa, aaaaa, ... \}

Ambiguous grammar: \(A \rightarrow aA \mid Aa \mid \epsilon \)

Unambiguous grammar: \(A \rightarrow aA \mid \epsilon \)
Example 2

The context free grammar $A \rightarrow A + A \mid A - A \mid a$

is ambiguous, since $a + a + a$ has two different left-most derivations.

$A \rightarrow A + A \rightarrow a + A \rightarrow a + A + A \rightarrow a + a + A \rightarrow a + a + a$

and

$A \rightarrow A + A \rightarrow A + A + A \rightarrow ... \rightarrow a + a + a$

(replacing left-most nonterminal A by $A+A$)
Example 3 (Dangling Else)

Statement = \texttt{if Condition then Statement} | \texttt{if Condition then Statement else Statement} | ...

The following statement can be parsed in two different ways:

\texttt{if a then if b then s else s2}

We can parse it as

\texttt{if a then (if b then s) else s2}

or as

\texttt{if a then (if b then s else s2)}

This is an example of an ambiguous language.
Chomsky Hierarchy

The classification of formal grammars by Noam Chomsky imposes restrictions on the production rules $u \rightarrow v$:

(0) no restrictions

(1) no shortening: $|u| \leq |v|$

(2) context free: u is a nonterminal symbol, $v \neq \epsilon$

(3) (right) regular: u is a nonterminal symbol, v is a single terminal symbol, or a nonterminal symbol followed by a terminal symbol, start symbol can produce the empty string.
Recursive Languages

A formal language is called recursive if and only if there exists a Turing machine such that on input of a finite input string:
- halts and accepts if the string is in the language,
- and halts and rejects otherwise.

Recursive languages correspond to decidable problems.
Examples and Counterexamples

Every context-sensitive grammar is recursive.

There exist recursive languages that are not context-sensitive.

The language corresponding to the Halting problem is not recursive.
The languages that are accepted by a Turing machine are called recursively enumerable languages (or semi-decidable languages).

There exists a TM that accepts yes instances, but might reject or loop forever on input of no instance.

Examples: The language of the Halting Problem, PCP

The type-0 formal languages are precisely the recursively enumerable languages.
Recursive vs. Recursively Enumerable

Theorem: If a formal language is recursive, then it is recursively enumerable.

Proof. This follows from the definitions.

The converse does not hold. Example: PCP is recursively enumerable, but not recursive (decidable).
Not Recursively Enumerable Languages

Theorem. There exist formal languages that are not recursively enumerable.

Proof. Let $S = \{0,1\}^*$ be the set of all finite binary strings. This is a countably infinite set.

Consider the formal language $P(S)$ of all sets of finite binary strings over the alphabet with symbols 0, 1, {, }.

This language is uncountable by Cantor's theorem, as $|S| < |P(S)|$, so there cannot exist a Turing machine accepting $P(S)$.