Deterministic and Randomized Quicksort
Andreas Klappenecker
Overview

- Deterministic Quicksort
- Modify Quicksort to obtain better asymptotic bound
- Linear-time median algorithm
- Randomized Quicksort
Deterministic Quicksort

Quicksort(A,p,r)

 if p < r then
 q := Partition(A,p,r); // rearrange A[p..r] in place
 Quicksort(A, p,q-1);
 Quicksort(A, q+1,r);
Divide-and-Conquer

The design of Quicksort is based on the divide-and-conquer paradigm.

a) **Divide:** Partition the array A[p..r] into two (possibly empty) subarrays A[p..q-1] and A[q+1,r] such that
 - A[x] > A[q] for all x in [q+1,r]

b) **Conquer:** Recursively sort A[p..q-1] and A[q+1,r]

c) **Combine:** nothing to do here
Select pivot (orange element) and rearrange:

- larger elements to the left of the pivot (red)
- elements not exceeding the pivot to the right (yellow)
Partition

Partition\(A, p, r\)

\[x := A[r]; \quad // \text{select rightmost element as pivot} \]

\[i := p-1; \]

for \(j = p \) to \(r-1 \) {
 if \(A[j] \leq x \) then \(i := i+1 \); swap\(A[i], A[j]\);
}

swap\(A[i+1], A[r]\);

return \(i+1 \);

Throughout the for loop:
- If \(p \leq k \leq i \) then \(A[k] \leq x \)
- If \(i+1 \leq k \leq j-1 \) then \(A[k] > x \)
- If \(k = r \), then \(A[k] = x \)
- \(A[j..r-1] \) is unstructured
Partition - Loop - Example

```
<table>
<thead>
<tr>
<th>2</th>
<th>8</th>
<th>7</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>p</td>
<td>j</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>2</th>
<th>8</th>
<th>7</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>i</td>
<td>j</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>2</th>
<th>8</th>
<th>7</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>i</td>
<td>j</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>2</th>
<th>8</th>
<th>7</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>i</td>
<td>j</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>2</th>
<th>8</th>
<th>7</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>i</td>
<td>j</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>2</th>
<th>8</th>
<th>7</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>i</td>
<td>j</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>2</th>
<th>8</th>
<th>7</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>i</td>
<td>j</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
After the loop, the partition routine swaps the leftmost element of the right partition with the pivot element:

\[\text{swap}(A[i+1], A[r]) \]

now recursively sort yellow and red parts.
The worst-case behavior for quicksort occurs on an input of length \(n\) when partitioning produces just one subproblem with \(n-1\) elements and one subproblem with 0 elements.

Therefore the recurrence for the running time \(T(n)\) is:

\[
T(n) = T(n-1) + T(0) + \theta(n) = T(n-1) + \theta(n) = \theta(n^2)
\]

Perhaps we should call this algorithm pokysort?
“Better” Quicksort and Linear Median Algorithm
Best-case Partitioning

Best-case partitioning:

If partition produces two subproblems that are roughly of the same size, then the recurrence of the running time is

$$T(n) \leq 2T(n/2) + \Theta(n)$$

so that $$T(n) = O(n \log n)$$

Can we achieve this bound?

Yes, modify the algorithm. Use a linear-time median algorithm to find median, then partition using median as pivot.
Linear Median Algorithm

Let $A[1..n]$ be an array over a totally ordered domain.

- Partition A into groups of 5 and find the median of each group. [You can do that with 6 comparisons]

- Make an array $U[1..n/5]$ of the medians and find the median m of U by recursively calling the algorithm.

- Partition the array A using the median-of-medians m to find the rank of m in A. If m is of larger rank than the median of A, eliminate all elements $> m$. If m is of smaller rank than the median of A, then eliminate all elements $\leq m$. Repeat the search on the smaller array.
Linear-Time Median Finding

How many elements do we eliminate in each round?

The array U contains n/5 elements. Thus, n/10 elements of U are larger (smaller) than m, since m is the median of U. Since each element in U is a median itself, there are 3n/10 elements in A that are larger (smaller) than m.

Therefore, we eliminate (3/10)n elements in each round.

Thus, the time T(n) to find the median is

\[T(n) \leq T(n/5) + T(7n/10) + 6n/5. \]

// median of U, recursive call, and finding medians of groups
Solving the Recurrence

Suppose that $T(n) \leq cn$ (for some c to be determined later)

$T(n) \leq c(n/5) + c(7n/10) + 6n/5 = c(9n/10) + 6n/5$

If this is to be $\leq cn$, then we need to have

$c(9n/10) + 12n/10 \leq cn$ or $12 \leq c$

Suppose that $T(1) = d$. Then choose $c = \max\{12, d\}$.

An easy proof by induction yields $T(n) \leq cn$.
Goal Achieved?

We can accomplish that quicksort achieves $O(n \log n)$ running time, if we use the linear-time median finding algorithm to select the pivot element.

Unfortunately, the constant in the big Oh expression becomes large, and quicksort loses some of its appeal.

Is there a simpler solution?
Randomized Quicksort
Randomized-Quicksort(A,p,r)

if p < r then
 q := Randomized-Partition(A,p,r);
 Randomized-Quicksort(A, p,q-1);
 Randomized-Quicksort(A,p+1,r);
Partition

Randomized-Partition(A,p,r)

\[i := \text{Random}(p,r); \]
\[\text{swap}(A[i],A[r]); \]
\[\text{Partition}(A,p,r); \]

Almost the same as Partition, but now the pivot element is not the rightmost element, but rather an element from A[p..r] that is chosen uniformly at random.
The running time of quicksort depends mostly on the number of comparisons performed in all calls to the Randomized-Partition routine.

Let X denote the random variable counting the number of comparisons in all calls to Randomized-Partition.
Let z_i denote the i-th smallest element of $A[1..n]$.

Thus $A[1..n]$ sorted is $<z_1, z_2, \ldots, z_n>$.

Let $Z_{ij} = \{z_i, \ldots, z_j\}$ denote the set of elements between z_i and z_j, including these elements.

$X_{ij} = I\{ z_i \text{ is compared to } z_j \}$.

Thus, X_{ij} is an indicator random variable for the event that the i-th smallest and the j-th smallest elements of A are compared in an execution of quicksort.
Number of Comparisons

Since each pair of elements is compared at most once by quicksort, the number X of comparisons is given by

$$X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$$

Therefore, the expected number of comparisons is

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr[z_i \text{ is compared to } z_j]$$
When do we compare z_i to z_j?

Suppose we pick a pivot element in $Z_{ij} = \{z_i, \ldots, z_j\}$.

If $z_i < x < z_j$ then z_i and z_j will land in different partitions and will never be compared afterwards.

Therefore, z_i and z_j will be compared if and only if the first element of Z_{ij} to be picked as pivot element is contained in the set $\{z_i, z_j\}$.
Probability of Comparison

\[\Pr[z_i \text{ or } z_j \text{ is the first pivot chosen from } Z_{ij}] \]
\[= \Pr[z_i \text{ is the first pivot chosen from } Z_{ij}] \]
\[+ \Pr[z_j \text{ is the first pivot chosen from } Z_{ij}] \]
\[= \frac{1}{j - i + 1} + \frac{1}{j - i + 1} = \frac{2}{j - i + 1} \]
Expected Number of Comparisons

\[E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j - i + 1} \]

\[= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k + 1} \]

\[< \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k} \]

\[= \sum_{i=1}^{n-1} O(\log n) \]

\[= O(n \log n) \]
Conclusion

It follows that the expected running time of Randomized-Quicksort is $O(n \log n)$.

It is unlikely that this algorithm will choose a terribly unbalanced partition each time, so the performance is very good almost all the time.