Analysis of Algorithms

Andreas Klappenecker
Motivation

In 2004, a mysterious billboard showed up
- in the Silicon Valley, CA
- in Cambridge, MA
- in Seattle, WA
- in Austin, TX

and perhaps a few other places.

Remarkably, the puzzle on the billboard was immediately discussed worldwide in numerous blogs.
Motivation
Recall Euler’s Number e

$$e = \exp(1) = \sum_{k=0}^{\infty} \frac{1}{k!}$$

$$\approx 2.7182818284 \ldots$$
Billboard Question

So the billboard question essentially asked: Given that

\[e = 2.7182818284 \ldots \]

Is 2718281828 prime?

Is 7182818284 prime?

The first affirmative answer gives the name of the website
Strategy

1. Compute the digits of e
2. $i := 0$
3. while true do {
4. Extract 10 digit number p at position i
5. return p if p is prime
6. $i := i+1$
7. }

Essentially, two questions need to be solved:

- How can we create the digits of e?
- How can we test whether an integer is prime?
Generating the Digits
Extracting Digits of e

We can extract the digits of e in base 10 by

\[d[0] = \lfloor e \rfloor; \quad \text{equals 2} \]

\[e_1 = 10\cdot(e-d[0]); \]

\[d[1] = \lfloor e_1 \rfloor; \quad \text{equals 7} \]

\[e_2 = 10\cdot(e_1-d[1]); \]

\[d[2] = \lfloor e_2 \rfloor; \quad \text{equals 1} \]

Unfortunately, e is a transcendental number, so there is no pattern to the generation of the digits in base 10.

Initial idea: Use rational approximation to e instead
Some Bounds on $e=\exp(1)$

For any t in the range $1 \leq t \leq 1 + 1/n$, we have

$$\frac{1}{1 + \frac{1}{n}} \leq \frac{1}{t} \leq 1.$$

Hence,

$$\int_1^{1+1/n} \frac{1}{1 + \frac{1}{n}} \, dt \leq \int_1^{1+1/n} \frac{1}{t} \, dt \leq \int_1^{1+1/n} 1 \, dt.$$

Thus,

$$\frac{1}{n + 1} \leq \ln \left(1 + \frac{1}{n} \right) \leq \frac{1}{n}.$$
Exponentiating

\[\frac{1}{n + 1} \leq \ln \left(1 + \frac{1}{n} \right) \leq \frac{1}{n} \]

yields

\[e^{1/n + 1} \leq \left(1 + \frac{1}{n} \right) \leq e^{\frac{1}{n}}. \]

Therefore, we can conclude that

\[\left(1 + \frac{1}{n} \right)^n \leq e \leq \left(1 + \frac{1}{n} \right)^{n + 1}. \]
Approximating e

Since

\[
(1 + \frac{1}{n})^n \leq e \leq (1 + \frac{1}{n})^n (1 + \frac{1}{n}),
\]

the term

\[
(1 + \frac{1}{n})^n
\]

approximates e to k digits, when choosing \(n = 10^{k+1} \).
Drawbacks

• The rational approximation converges too slow.
• We need rational arithmetic with long rationals
• Too much coding unless a library is used.
• Perhaps we can find a better solution by choosing a better data structure.
Generating the Digits
Version 2
Idea

- e is a transcendental number
 => no pattern when generating its digits in the usual number representation

- Can we find a better data structure?
Mixed Radix Representation

The digits a_i are nonnegative integers.

The base of this representation is $(1/2, 1/3, 1/4, ...)$.

The representation is called **regular** if $a_i \leq i$ for $i \geq 1$.

Number is written as $(a_0; a_1, a_2, a_3, ...)$
Computing the Digits of the Number e

- Second approach:

\[e = \sum_{k=0}^{\infty} \frac{1}{k!} = 1 + \frac{1}{1} \left(1 + \frac{1}{2} \left(1 + \frac{1}{3} \left(1 + \cdots \right) \right) \right) \]

- In mixed radix representation

$e = (2;1,1,1,1,\ldots)$ where the digit 2 is due to the fact that both $k=0$ and $k=1$ contribute to the integral part. Remember: $0!=1$ and $1!=1$.
Mixed Radix Representations

• In mixed radix representation \((a_0; a_1, a_2, a_3, \ldots)\)

\(a_0\) is the integer part and \((0; a_1, a_2, a_3, \ldots)\) the fractional part.

• 10 times the number is \((10a_0; 10a_1, 10a_2, 10a_3, \ldots)\), but the representation is not regular anymore. The first few digits might exceed their bound. Remember that the ith digit is supposed to be i or less.

• Renormalize the representation to make it regular again

• The algorithm given for base 10 now becomes feasible; this is known as the spigot algorithm.
\[e = 2 + \left[\frac{1}{2}(1 + \frac{1}{3}(1 + \frac{1}{4}(1 + \frac{1}{5} \\
(1 + \frac{1}{6}(1 + \ldots \))))) \\
= 2 + \frac{1}{10}\left[\frac{1}{2}(10 + \frac{1}{3}(10 + \frac{1}{4}(10 + \frac{1}{5} \\
(10 + \frac{1}{6}(10 + \ldots \)))))\right] \\
= \frac{2}{2} + \frac{1}{10}\left[7 + \frac{1}{2}(0 + \frac{1}{3}(1 + \frac{1}{4}(0 + \frac{1}{5} \\
(1 + \frac{1}{6}(5 + \ldots \)))))\right] \]
\[= 2.7 + \frac{1}{100} \left[\frac{1}{2} \left(0 + \frac{1}{3} \left(10 + \frac{1}{4} \left(0 + \frac{1}{5} \left(10 + \frac{1}{6} (50 + \ldots) \right) \right) \right) \right] \]

\[= 2.7 + \frac{1}{100} \left[1 + \frac{1}{2} \left(1 + \frac{1}{3} \left(1 + \frac{1}{4} \left(3 + \frac{1}{5} \left(4 + \frac{1}{6} (2 + \ldots) \right) \right) \right) \right) \right] \]
Spigot Algorithm

```c
#define N (1000) /* compute N-1 digits of e, by brainwagon@gmail.com */

main(i, j, q) { 
  int A[N]; printf("2.");
  for ( j = 0; j < N; j++ )
    A[j] = 1; /* here the ith digit is represented by A[i-1], as the integral part is omitted */
  set all digits of nonintegral part to 1.
  for ( i = 0; i < N - 2; i++ ) {
    q = 0;
    for ( j = N - 1; j >= 0; ) {
      A[j] = 10 * A[j] + q; /* compute the amount that needs to be carried over to the next digit */
      q = A[j] / (j + 2); /* we divide by j+2, as regularity means here that A[j] <= j+1 */
      A[j] %= (j + 2); /* keep only the remainder so that the digit is regular */
      j--;
    }
    putchar(q + 48);
  }
}
```
Revisiting the Question

For mathematicians, the previous algorithm is natural, but it might be a challenge for computer scientists and computer engineers to come up with such a solution.

Could we get away with a simpler approach?

After all, the billboard only asks for the first prime in the 10-digit numbers occurring in e.
Generating the Digits
Version 3
Probability to be Prime

Let $\pi(x) =$ number of primes less than or equal to x.

$\Pr[\text{number with } \leq 10 \text{ digits is prime }]$

$= \pi(99999 99999)/99999 99999$

$= 0.045$ (roughly)

Thus, the probability that none of the first k 10-digits numbers in e are prime is roughly 0.955^k

This probability rapidly approaches 0 for $k \to \infty$, so we need to compute just a few digits of e to find the first 10-digit prime number in e.
Google it!

Since we will likely need just few digits of Euler’s number e, there is no need to reinvent the wheel.

We can simply

- google e or
- use the GNU bc calculator

to obtain a few hundred digits of e.
State of Affairs

We have provided three solutions to the question of generating the digits of e

• A straightforward solution using rational approximation

• An elegant solution using the mixed-radix representation of e that led to the spigot algorithm

• A crafty solution that provides enough digits of e to solve the problem at hand.
How do we check Primality?

The second question concerning the testing of primality is simpler.

If a number x is not prime, then it has a divisor d in the range $2 \leq d \leq \sqrt{x}$.

Trial divisions are fast enough here!

Simply check whether any number d in the range $2 \leq d < 100\,000$ divides a 10-digit chunk of e.
A Simple Script

#!/bin/sh
echo "scale=1000; e(1)" | bc -l | \
perl -0777 -ne 's/[\^0-9]//g;
for $i (0..length($__)-10) {
 $j=substr($__,$i,10);
 $j +=0;
 print "$i\t$j\n" if is_p($j);
}

sub is_p {
 my $n = shift;
 return 0 if $n <= 1;
 return 1 if $n <= 3;
 for (2 .. sqrt($n)) {
 return 0 unless $n % $__;
 }
 return 1;
What was it all about?

The billboard was an ad paid for by Google. The website

http://www.7427466391.com

contained another challenge and then asked people to submit their resume.

Google’s obsession with e is well-known, since they pledged in their IPO filing to raise e billion dollars, rather than the usual round-number amount of money.
Summary

- Rational approximation to e and primality test by trial division
- Spigot algorithm for e and primality test by trial division
- A simple crafty solution