Finding the Second Largest Element
 Andreas Klappenecker

Problem

Given a set of n elements from a totally ordered domain, our goal is to find the second largest element m_{2}.

How many queries are needed to determine m_{2} ?

Upper Bound

We can compare the elements pairwise in a tournament style.
If $x<y$, then we say that y wins.

- If an element was never compared to the largest element, then it cannot be second largest (e.g. a a_{2}).
- Find second largest among the one's who have lost to the largest.
- So $<=(n-1)+\lceil\lg n\rceil-1$ comparisons

Lower Bound

Any algorithm to determine the second largest element of a totally ordered set n elements needs at least $(n-2)+\lceil\lg n\rceil$ comparisons in the worst case.

Lower Bound

Let m_{1} be the largest element and m_{2} the second largest element.
An algorithm to determine m_{2} needs to find the largest element m_{1} for otherwise an adversary would be able to exchange m_{1} for m_{2}.

Furthermore, the $n-2$ elements below m_{2} must be identified by the algorithm, meaning that they must have lost in comparison to m_{2} or some element below m_{2}. This means that there are $n-2$ comparisons that do not involve m_{1}.

It remains to show that an adversary can force any algorithm to do at least $\lceil\lg n\rceil$ comparisons with the largest element m_{1}.

Adversary 1

Our goal is to show that an algorithm Z needs to make $\lg n$ or more comparisons with the largest element.

We construct an adversary that answers comparisons "Is a <= b?" consistent with a total order of the n elements.

For each element x, we let $K(x)$ denote the set of elements y known to Z that satisfy $y<=x$. Initially $K(x)=\{x\}$.

The adversary uses previous query history of Z and $K(a)$ and $K(b)$ to create answer for questions such as "Is $a<=b$ ".

Adversary 2

The adversary behaves as follows:

- If "Is $a<=b$?" was asked before, give same answer.
- If "Is $a<=b$?" was not asked before, then answer
- yes if $|K(a)|<=|K(b)|$. Update $K(b):=K(a) \cup K(b)$
- no, if $|K(a)|>|K(b)|$. Update $K(a):=K(a) \cup K(b)$

Adversary 3

Let S be the totally ordered domain of n elements.

- At the beginning $|K(a)|=1$ holds for all a in S.
- For each query involving $a,|K(a)|$ can at most double.
- Since Z needs to determine largest element, $\left|K\left(m_{1}\right)\right|=n$ must hold at the end.
- The number k of queries involving m_{1} satisfies $2^{k}>=n$, so $k>=\lg n$ and since k must be an integer, we have $k>=\lceil\lg n\rceil$.

Conclusions

Any algorithm to determine the second largest element of a totally ordered set n elements needs at least $(n-2)+\lceil\lg n\rceil$ comparisons in the worst case.

We have given an optimal algorithm that attains this lower bound.

