Finding the Second Largest Element

Andreas Klappenecker

Problem

Given a set of n elements from a totally ordered domain, our goal is to find the second largest element m_2 .

How many queries are needed to determine m₂?

Upper Bound

We can compare the elements pairwise in a tournament style. If x < y, then we say that y wins.

- If an element was never compared to the largest element, then it cannot be second largest (e.g. a_2). - Find second largest among the one's who have lost to the largest. - So <= $(n-1) + \lceil lg n \rceil - 1$ comparisons

Lower Bound

Any algorithm to determine the second largest element of a totally ordered set n elements needs at least $(n-2) + \lceil \lg n \rceil$ comparisons in the worst case.

Lower Bound

Let m_1 be the largest element and m_2 the second largest element.

An algorithm to determine m_2 needs to find the largest element m_1 for otherwise an adversary would be able to exchange m_1 for m_2 .

Furthermore, the n-2 elements below m_2 must be identified by the algorithm, meaning that they must have lost in comparison to m_2 or some element below m_2 . This means that there are n-2 comparisons that do not involve m_1 .

It remains to show that an adversary can force any algorithm to do at least $\lceil \lg n \rceil$ comparisons with the largest element m_1 .

Adversary 1

Our goal is to show that an algorithm Z needs to make lg n or more comparisons with the largest element.

We construct an adversary that answers comparisons "Is a $\leq b$?" consistent with a total order of the n elements.

For each element x, we let K(x) denote the set of elements y known to Z that satisfy $y \le x$. Initially $K(x) = \{x\}$.

The adversary uses previous query history of Z and K(a) and K(b) to create answer for questions such as "Is a $\leq b''$.

Adversary 2

The adversary behaves as follows:
If "Is a <= b?" was asked before, give same answer.
If "Is a <= b?" was not asked before, then answer
yes if |K(a)| <= |K(b)|. Update K(b) := K(a) ∪ K(b)
no, if |K(a)| > |K(b)|. Update K(a) := K(a) ∪ K(b)

Adversary 3

Let S be the totally ordered domain of n elements.

- At the beginning |K(a)| = 1 holds for all a in S.
- For each query involving a, |K(a)| can at most double.

- Since Z needs to determine largest element, $|K(m_1)| = n$ must hold at the end.

- The number k of queries involving m_1 satisfies $2^k \ge n$, so k $\ge lg n$ and since k must be an integer, we have $k \ge \lceil \lg n \rceil$.

Conclusions

Any algorithm to determine the second largest element of a totally ordered set n elements needs at least $(n-2) + \lceil \lg n \rceil$ comparisons in the worst case.

We have given an optimal algorithm that attains this lower bound.