
Finding the Second Largest
Element

Andreas Klappenecker

Problem

Given a set of n elements from a totally ordered domain, our goal
is to find the second largest element m2.

How many queries are needed to determine m2?

!

Upper Bound

We can compare the elements pairwise in a tournament style.

If x < y, then we say that y wins.

!

!

!

a1 a2 a3 a4

a4a1

a4 - If an element was never compared
to the largest element, then it cannot
be second largest (e.g. a2).

- Find second largest among the one’s
who have lost to the largest.

- So <= (n-1) +⎡lg n⎤- 1 comparisons

??

?

Lower Bound

Any algorithm to determine the second largest element of a totally
ordered set n elements needs at least (n-2) +⎡lg n⎤comparisons in
the worst case.

!

Lower Bound
Let m1 be the largest element and m2 the second largest element.

An algorithm to determine m2 needs to find the largest element m1 for
otherwise an adversary would be able to exchange m1 for m2.

Furthermore, the n-2 elements below m2 must be identified by the
algorithm, meaning that they must have lost in comparison to m2 or
some element below m2. This means that there are n-2 comparisons that
do not involve m1.

It remains to show that an adversary can force any algorithm to do at
least⎡lg n⎤comparisons with the largest element m1.

Adversary 1
Our goal is to show that an algorithm Z needs to make lg n or
more comparisons with the largest element.

We construct an adversary that answers comparisons “Is a <= b?”
consistent with a total order of the n elements.

For each element x, we let K(x) denote the set of elements y
known to Z that satisfy y <= x. Initially K(x) = {x}.

The adversary uses previous query history of Z and K(a) and K(b)
to create answer for questions such as “Is a <= b”.

Adversary 2

The adversary behaves as follows:

- If “Is a <= b?” was asked before, give same answer.

- If “Is a <= b?” was not asked before, then answer

yes if |K(a)| <= |K(b)|. Update K(b) := K(a) ∪ K(b)

no, if |K(a)| > |K(b)|. Update K(a) := K(a) ∪ K(b)

Adversary 3
Let S be the totally ordered domain of n elements.

- At the beginning |K(a)| = 1 holds for all a in S.

- For each query involving a, |K(a)| can at most double.

- Since Z needs to determine largest element, |K(m1)| = n must hold
at the end.

- The number k of queries involving m1 satisfies 2k >= n, so k >= lg n

and since k must be an integer, we have k >= ⎡lg n⎤.

Conclusions

Any algorithm to determine the second largest element of a totally
ordered set n elements needs at least (n-2) +⎡lg n⎤comparisons in
the worst case.

We have given an optimal algorithm that attains this lower bound.

!

