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Implementing Boolean Functions

§5. EXAMPLES 21

Applying controlled-not gates on the three least significant qubits as target
qubits, with the most significant bit as a control bit, yields the desired state

1√
2
|0000�+ 1√

2
|1111�.

Indeed, if we apply the three controlled-not gates to the state |0000�, then
this state remains unchanged, and if we apply the three controlled-not gates
to |1000�, then we get |1111�; the result follows by linearity of the quantum
gates. In graphical notation, the quantum circuit is given by

H

Exercise 2.26 Design a quantum circuit that prepares the superposition of
all basis states with even parity for a system of three quantum bits, namely
the state

1

2
|000�+ 1

2
|011�+ 1

2
|101�+ 1

2
|110�.

Assume that the memory is initially in the state |000�.

Example 3. Suppose that we have a boolean function f : Fn
2 → F2. A

quantum circuit implementing f has to be realized by a unitary map. This
can be accomplished, for instance, by implementing the map

|y� ⊗ |x� �→ |y ⊕ f(x)� ⊗ |x�

on n + 1 qubits, where x ∈ Fn
2 , and y ∈ F2. The most significant bit is the

output bit, and the n lowest significant bits are the input bits. The result of
f(x) is added modulo 2 to the output bit. The result is a quantum circuit of
the form

|x�

|y�

...
f ... |x�

|y ⊕ f(x)�
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Quantum Circuit

§5. EXAMPLES 21

Applying controlled-not gates on the three least significant qubits as target
qubits, with the most significant bit as a control bit, yields the desired state

1√
2
|0000�+ 1√

2
|1111�.

Indeed, if we apply the three controlled-not gates to the state |0000�, then
this state remains unchanged, and if we apply the three controlled-not gates
to |1000�, then we get |1111�; the result follows by linearity of the quantum
gates. In graphical notation, the quantum circuit is given by

H

Exercise 2.26 Design a quantum circuit that prepares the superposition of
all basis states with even parity for a system of three quantum bits, namely
the state

1

2
|000�+ 1

2
|011�+ 1

2
|101�+ 1

2
|110�.

Assume that the memory is initially in the state |000�.

Example 3. Suppose that we have a boolean function f : Fn
2 → F2. A

quantum circuit implementing f has to be realized by a unitary map. This
can be accomplished, for instance, by implementing the map

|y� ⊗ |x� �→ |y ⊕ f(x)� ⊗ |x�

on n + 1 qubits, where x ∈ Fn
2 , and y ∈ F2. The most significant bit is the

output bit, and the n lowest significant bits are the input bits. The result of
f(x) is added modulo 2 to the output bit. The result is a quantum circuit of
the form

|x�

|y�

...
f ... |x�

|y ⊕ f(x)�

Thursday, September 25, 2014



Typical Application
22 CHAPTER 2. QUANTUM CIRCUITS

The linearity of the circuit allows to evaluate f for any linear combination of

the basis states. Assume that all n+1 quantum bits are initialized with state

|0�. We apply the Hadamard gate to all n input bits. The resulting state is

1√
2n

�

x∈Fn
2

|0� ⊗ |x�,

a superposition of all possible inputs. If we apply the circuit implementing

the function f , then we obtain as a result

1√
2n

�

x∈Fn
2

|f(x)� ⊗ |x�.

Thus, the circuit evaluates the function f for all possible inputs at once.

Exercise 2.27 Design a quantum circuit that implements the parity function

f(x2, x1, x0) = x2⊕x1⊕x0. Show how this circuit can be used to generate the

state
1
2 (|0000�+ |1010�+ |1100�+ |0110�) . Assume that the input is |0000�.

You can use additional single qubit gates to obtain this result.
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