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Proof. We can write U in the form U = eiaV , where V is some unitary matrix

with determinant 1. The matrix V has to be of the form V =
�
α −β
β α

�
. Indeed,

the columns of a unitary matrix are orthogonal, hence the right column of V
has to be a multiple of (−β,α)t; and the determinant constraint forces V
to be of the given form. We can write α and β in the form α = eih cos c
and β = e−ik sin c for some real numbers h, k, c, because α and β satisfy
|α|2 + |β|2 = 1; it follows that

V =

�
eih cos c −eik sin c
e−ik sin c e−ih cos c

�
.

We can find real numbers b and d satisfying h = −d− b and k = d− b, hence

V =

�
e−i(b+d) cos c −ei(d−b) sin c
ei(b−d) sin c ei(b+d) cos c

�
=

�
e−ib 0
0 eib

��
cos c − sin c
sin c cos c

��
e−id 0
0 eid

�
,

which proves the claim.

Let us denote by S(b) and R(c) the matrices

S(b) =

�
e−ib 0
0 eib

�
and R(c) =

�
cos c − sin c
sin c cos c

�
.

The statement of the previous lemma is that a unitary matrix can be written
in the form U = eiaS(b)R(c)S(d) for some a, b, c, d ∈ R. Notice that

XR(c)X = R(−c) and XS(b)X = S(−b).

Theorem 1 For each unitary matrix U ∈ U(2) there exist matrices A,B,C,
and E in U(2) such that

U
=

A

E

B C .

Proof. If U = eiaS(b)R(c)S(d), choosing the matrices

C = S(b)R(c/2), B = R(−c/2)S(−(d+ b)/2),
A = S((d− b)/2), E = diag(1, eia),

yields the desired result. Indeed, we have CBA = 1. Therefore, the circuit on
the right hand side yields on input of |00� and |01� the same result as Λ0;1(U).
Using X2 = 1, we obtain for CXBXA the expression

CXBXA = S(b)R(c/2)� �� �
C

X R(−c/2)XXS(−(d+ b)/2)� �� �
B

X S((d− b)/2)� �� �
A

,
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Parametrization of U(2)
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significant bit being 0. The fourth gate conditions on both bits being 1.

U U

Λ1,2,0(U)
|00� ⊗ |ψ� �→ |00� ⊗ |ψ�
|01� ⊗ |ψ� �→ |01� ⊗ |ψ�
|10� ⊗ |ψ� �→ |10� ⊗ U |ψ�
|11� ⊗ |ψ� �→ |11� ⊗ |ψ�

Λ∅,{1,2},0(U)
|00� ⊗ |ψ� �→ |00� ⊗ |ψ�
|01� ⊗ |ψ� �→ |01� ⊗ |ψ�
|10� ⊗ |ψ� �→ |10� ⊗ |ψ�
|11� ⊗ |ψ� �→ |11� ⊗ U |ψ�

It might be worthwhile to single out a particularly important special case.

Example 4 The Toffoli gate λ∅,{1,2},0}(X) is a not gate that applied if and

only if its two control bits are set. his gate is graphically denoted by

In other words, the Toffoli gates maps |110� �→ |111� and |111� �→ |110�, and
keeps the remaining states of the computational basis unchanged.

We call Λo,ι,t(U) a single control quantum gate if and only if |o∪ι| = 1,
and a multiple control quantum gate if and only if |o ∪ ι| > 1.

§2 Single Control Quantum Gates

Single control quantum gates are a modest generalization of controlled-not
gates. In this section, we show that any single control quantum gate can be
realized by a sequence of controlled-not and single quantum bit gates.

We begin with a parameterization of matrices in the unitary group U(2)
that is of its own interest.

Lemma 1 A unitary matrix U ∈ U(2) can be expressed in the form

U = eia
�
e−ib 0
0 eib

��
cos c − sin c
sin c cos c

��
e−id 0
0 eid

�
,

for some real numbers a, b, c, and d.
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which simplifies to CXBXA = S(b)R(c/2)R(c/2)S((d+ b)/2)S((d− b)/2) =
S(b)R(c)S(d). It follows that |1� ⊗ |ψ� is transformed by the circuit on the
right hand side to

eia|1� ⊗ S(b)R(c)S(d)|ψ� = |1� ⊗ U |ψ�,

which coincides with the action of Λ0;1(U).

§3 Multiple Control Quantum Gates

In this section, we will demonstrate that a quantum gate with several control
bits can be realized by single quantum bit gates and controlled-not gates.

Since one can diagonalize a unitary matrix U by a unitary base change,
it is possible to form its square root. In other words, one can find a unitary
matrix V such that U = V 2. The next lemma gives a convenient way to
find a square root of a unitary 2 × 2 matrix without tedious eigenvalue and
eigenvector calculations. This construction will be helpful when trying to
replace a quantum gate with two control bits by simpler gates that have one
control bit.

Lemma 2 Let U be a unitary 2 × 2 matrix that is not a multiple of the

identity matrix I. Then

V =
1�

trU ± 2
√
detU

(U ±
√
detU I)

is a unitary matrix satisfying U = V 2.

Proof. Let us first show that V is a well-defined matrix. Seeking a contradic-
tion, we assume that trU ± 2

√
detU = 0. Let λ1,λ2 be the eigenvalues of U .

We have detU = λ1λ2 and trU = λ1 + λ2. It follows that

λ1 + λ2 = trU = ∓2
√
detU = 2

�
λ1λ2.

Since U is unitary, |λ1| = |λ2| = 1. Therefore, |λ1 + λ2| = 2|
√
λ1λ2| = 2.

This means that the triangle inequality |λ1 + λ2| ≤ 2 = |λ1|+ |λ2| holds with
equality, which implies that λ1 = rλ2 for some positive real number r. Since
|λ1| = |λ2| = 1, we have |r| = r = 1, which means that the eigenvalues λ1 and
λ2 must be the same. This would imply that U is a multiple of the identity,
contradicting our hypothesis. Therefore, trU ± 2

√
detU is nonzero and the

matrix V is well-defined.
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