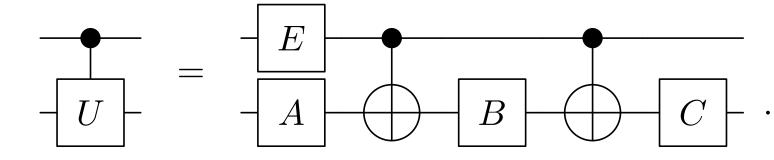
Controlled Quantum Gates

Andreas Klappenecker

Goal

Theorem 1 For each unitary matrix $U \in \mathcal{U}(2)$ there exist matrices A, B, C, and E in $\mathcal{U}(2)$ such that



Parametrization of U(2)

Lemma 1 A unitary matrix $U \in \mathcal{U}(2)$ can be expressed in the form

$$U = e^{ia} \begin{pmatrix} e^{-ib} & 0\\ 0 & e^{ib} \end{pmatrix} \begin{pmatrix} \cos c & -\sin c\\ \sin c & \cos c \end{pmatrix} \begin{pmatrix} \\ \end{array}$$

for some real numbers a, b, c, and d.

 $\begin{pmatrix} e^{-id} & 0\\ 0 & e^{id} \end{pmatrix},$

Parametrization (Proof)

Proof. We can write U in the form $U = e^{ia}V$, where V is some unitary matrix with determinant 1. The matrix V has to be of the form $V = \begin{pmatrix} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{pmatrix}$. Indeed, the columns of a unitary matrix are orthogonal, hence the right column of V has to be a multiple of $(-\overline{\beta}, \overline{\alpha})^t$; and the determinant constraint forces V to be of the given form. We can write α and β in the form $\alpha = e^{ih} \cos c$ and $\beta = e^{-ik} \sin c$ for some real numbers h, k, c, because α and β satisfy $|\alpha|^2 + |\beta|^2 = 1$; it follows that

$$V = \begin{pmatrix} e^{ih} \cos c & -e^{ik} \sin c \\ e^{-ik} \sin c & e^{-ih} \cos c \end{pmatrix}.$$

Parametrization (Proof)

We can find real numbers b and d satisfying h = -d - b and k = d - b, hence $V = \begin{pmatrix} e^{-i(b+d)}\cos c & -e^{i(d-b)}\sin c \\ e^{i(b-d)}\sin c & e^{i(b+d)}\cos c \end{pmatrix} = \begin{pmatrix} e^{-ib} & 0 \\ 0 & e^{ib} \end{pmatrix} \begin{pmatrix} \cos c & -\sin c \\ \sin c & \cos c \end{pmatrix} \begin{pmatrix} e^{-id} & 0 \\ 0 & e^{id} \end{pmatrix},$ which proves the claim. \blacksquare

Conjugation by NOTs

Let us denote by S(b) and R(c) the matrices

$$S(b) = \begin{pmatrix} e^{-ib} & 0\\ 0 & e^{ib} \end{pmatrix} \text{ and } R(c) = \begin{pmatrix} \cos c & -\sin c\\ \sin c & \cos c \end{pmatrix}$$

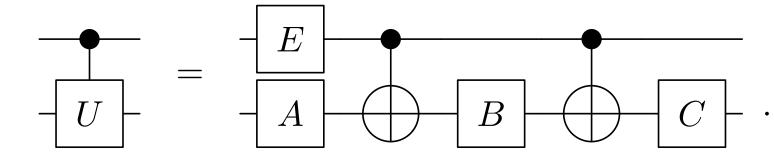
The statement of the previous lemma is that a unitary matrix can be written in the form $U = e^{ia}S(b)R(c)S(d)$ for some $a, b, c, d \in \mathbf{R}$. Notice that

$$XR(c)X = R(-c)$$
 and $XS(b)X = S(-b)$.

c

Controlled Unitary Gates

Theorem 1 For each unitary matrix $U \in \mathcal{U}(2)$ there exist matrices A, B, C, and E in $\mathcal{U}(2)$ such that



Proof. If $U = e^{ia}S(b)R(c)S(d)$, choosing the matrices

$$C = S(b)R(c/2),$$
 $B = R(-c/2)S(-(d+b)/2),$
 $A = S((d-b)/2),$ $E = \text{diag}(1, e^{ia}),$

yields the desired result. Indeed, we have CBA = 1. Therefore, the circuit on the right hand side yields on input of $|00\rangle$ and $|01\rangle$ the same result as $\Lambda_{0,1}(U)$. Using $X^2 = 1$, we obtain for CXBXA the expression

$$CXBXA = \underbrace{S(b)R(c/2)}_{C} X \underbrace{R(-c/2)XXS(-(d+b)/2)}_{B} X$$

()/2),

 $X \underbrace{S((d-b)/2)}_{\cdot},$

which simplifies to CXBXA = S(b)R(c/2)R(c/2)S((d+b)/2)S((d-b)/2) =S(b)R(c)S(d). It follows that $|1\rangle \otimes |\psi\rangle$ is transformed by the circuit on the right hand side to

 $e^{ia}|1\rangle \otimes S(b)R(c)S(d)|\psi\rangle = |1\rangle \otimes U|\psi\rangle,$

which coincides with the action of $\Lambda_{0;1}(U)$.

