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Deutsch’s Problem

Suppose that we are given a Boolean function f: {0,1} -> {0,1}. So it 
has a single bit input. 

The problem is to decide whether f is a constant function or not. 

[Apparently, we need to look at both values f(0) and f(1) to answer 
this question. If we have a black box implementation of f ] 
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f(0)⊕ f(1), the sum of f(0) and f(1) modulo 2. The goal is to solve this task
with a minimal number of calls to the black box.

The classical solution to this problem requires two calls to the black box,
since the function might be constant or not. In the quantum version, you are
given an implementation of f as a quantum circuit on two quantum bits,

|x1� ⊗ |x0� �→ |x1� ⊗ |x0 ⊕ f(x1)�, (3.4)

with x1, x0 ∈ F2 = {0, 1}. The quantum version can be solved with a single
call to the black box. The problem and its solution were suggested by Deutsch
in 1985; it is historically one of the first quantum algorithms.

Exercise 3.4 Give implementations of the quantum circuit (3.4) for the con-
stant functions (a) f(0) = f(1) = 0, and (b) f(0) = f(1) = 1, as well as for
the balanced functions (c) f(0) = 0, f(1) = 1, and (d) f(0) = 1, f(1) = 0.

Let B denote the unitary map on C4 determined by (3.4). We will derive
the solution in some small steps. It is clear that we have to take advantage
of the superposition principle to evaluate the boolean function simultaneously
for both possible input arguments. The solution to Deutsch’s problem uses
an additional trick, which allows us to encode the value of f(x) into a phase
factor. Suppose that the least significant bit is in the state 1/

√
2(|0� − |1�),

then

B

�
|x1� ⊗

� 1√
2
|0� − 1√

2
|1�

��
= |x1� ⊗

� 1√
2
|f(x1)� −

1√
2
|1⊕ f(x1)�

�
=: vx1

for all x1 ∈ {0, 1}. If the value of f(x1) is zero, then the input state remains
invariant; otherwise, B affects a change of sign. Explicitly,

vx1 = (−1)f(x1)|x1� ⊗
� 1√

2
|0� − 1√

2
|1�

�
.

We can now use the superposition principle. If we choose 1/
√
2(|0�+ |1�) for

the most significant qubit, then we obtain the result 1/
√
2(v0 + v1) since the

black box B is linear. To put this in a different way, we get

B

�
1

2
(|0�+ |1�)⊗ (|0� − |1�)

�
=

1

2
((−1)f(0)|0�+ (−1)f(1)|1�)⊗ (|0� − |1�).

The goal was to discriminate between functions, which satisfy f(0)⊕f(1) = 0,
and functions satisfying f(0)⊕ f(1) = 1. The previous state is equivalent to






±1

2
(|0�+ |1�)⊗ (|0� − |1�) if f(0)⊕ f(1) = 0,

±1

2
(|0� − |1�)⊗ (|0� − |1�) if f(0)⊕ f(1) = 1.

B:
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§3. HIDDEN SUBGROUP PROBLEMS 31

If we apply the Hadamard gate on the most significant qubit, then we get






±|0� ⊗ 1√
2
(|0� − |1�) if f(0)⊕ f(1) = 0,

±|1� ⊗ 1√
2
(|0� − |1�) if f(0)⊕ f(1) = 1.

We measure the most significant qubit now. If the function in the black box

satisfies f(0) ⊕ f(1) = 0, then we will observe 0 with certainty. If f satisfies

f(0)⊕f(1) = 1, then we will observe 1. Note that the algorithm is completely

deterministic. We can summarize the algorithm that we have developed as

follows:

|0�

|1� H

H

B

H

The reader should pause here for a moment and retrace each step in the

circuit diagram. The first two Hadamard gates prepare the superposition of

the input and the state which allows the encoding of the value of f(x) into a

phase factor.

§3 Hidden Subgroup Problems

Deutsch’s problem is an instance of a hidden subgroup problem. The hidden

subgroup problem is often considered as the Holy Grail of quantum computing

and has inspired a considerable amount of research. We need some terminology

before we can state this problem. Recall that a group is a non-empty set G

with a composition operation ◦ : G×G → G, such that

G1 ((x ◦ y) ◦ z) = (x ◦ (y ◦ z)) holds for all x, y, z ∈ G;

G2 there exists an element e ∈ G such that e ◦ x = x ◦ e = x for all x ∈ G;

G3 for each x ∈ G, there exists an x
−1 ∈ G such x ◦ x−1

= x
−1 ◦ x = e.

Axiom G1 states that the composition is associative, and G2 that there exists

an identity (or neutral) element. Note that this identity element is uniquely

determined. The axiom G3 states that each element x in G has an inverse

element.
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