Quantum Gates with Multiple Controls

Andreas Klappenecker

Goal

Theorem 2 A unitary gate controlled by two control bits can be expressed in terms of singly controlled quantum gates as follows:

where V is a 2×2 unitary matrix such that $U=V^{2}$.

Proof

Proof. The gate on the left hand side acts on basis states in the following way:

$$
\begin{array}{lll}
|00\rangle \otimes|x\rangle & \mapsto & |00\rangle \otimes|x\rangle \\
|01\rangle \otimes|x\rangle & \mapsto & |01\rangle \otimes|x\rangle \\
|10\rangle \otimes|x\rangle & \mapsto & |10\rangle \otimes|x\rangle \\
|11\rangle \otimes|x\rangle & \mapsto & |11\rangle \otimes U|x\rangle
\end{array}
$$

Proof

for $x \in\{0,1\}$. The five gates in circuit on the right hand side act on the basis states as follows:

$$
\left.\begin{array}{l}
|00\rangle \otimes|x\rangle \mapsto|00\rangle \otimes|x\rangle \quad \mapsto|00\rangle \otimes|x\rangle \mapsto|00\rangle \otimes|x\rangle \quad \mapsto|00\rangle \otimes|x\rangle \quad \mapsto|00\rangle \otimes|x\rangle \\
|01\rangle \otimes|x\rangle \mapsto|01\rangle \otimes V|x\rangle \mapsto|01\rangle \otimes V|x\rangle \mapsto|01\rangle \otimes V^{\dagger} V|x\rangle \mapsto|01\rangle \otimes|x\rangle \quad \mapsto|01\rangle \otimes|x\rangle \\
|10\rangle \otimes|x\rangle \mapsto|10\rangle \otimes|x\rangle \mapsto|11\rangle \otimes|x\rangle \mapsto|11\rangle \otimes V^{\dagger}|x\rangle \\
|11\rangle \otimes|10\rangle \otimes|x\rangle \mapsto|11\rangle \otimes V|x\rangle \mapsto|10\rangle \otimes V|x\rangle \mapsto|10\rangle \otimes V|x\rangle \\
|10\rangle
\end{array}\right) \mapsto|11\rangle \otimes V|x\rangle \mapsto|11\rangle \otimes|x\rangle
$$

Loose Ends...

It remains to show that for a given 2×2 unitary matrix U, there really exists a unitary 2×2 matrix V that is the "square-root" of U.

Convenient Squareroot Lemma

Lemma 2 Let U be a unitary 2×2 matrix that is not a multiple of the identity matrix I. Then

$$
V=\frac{1}{\sqrt{\operatorname{tr} U \pm 2 \sqrt{\operatorname{det} U}}}(U \pm \sqrt{\operatorname{det} U} I)
$$

is a unitary matrix satisfying $U=V^{2}$.

Proof of Squareroot Lemma

Proof. Let us first show that V is a well-defined matrix. Seeking a contradiction, we assume that $\operatorname{tr} U \pm 2 \sqrt{\operatorname{det} U}=0$. Let λ_{1}, λ_{2} be the eigenvalues of U. We have $\operatorname{det} U=\lambda_{1} \lambda_{2}$ and $\operatorname{tr} U=\lambda_{1}+\lambda_{2}$. It follows that

$$
\lambda_{1}+\lambda_{2}=\operatorname{tr} U=\mp 2 \sqrt{\operatorname{det} U}=2 \sqrt{\lambda_{1} \lambda_{2}}
$$

Since U is unitary, $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=1$. Therefore, $\left|\lambda_{1}+\lambda_{2}\right|=2\left|\sqrt{\lambda_{1} \lambda_{2}}\right|=2$. This means that the triangle inequality $\left|\lambda_{1}+\lambda_{2}\right| \leq 2=\left|\lambda_{1}\right|+\left|\lambda_{2}\right|$ holds with equality, which implies that $\lambda_{1}=r \lambda_{2}$ for some positive real number r. Since $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=1$, we have $|r|=r=1$, which means that the eigenvalues λ_{1} and λ_{2} must be the same. This would imply that U is a multiple of the identity, contradicting our hypothesis. Therefore, $\operatorname{tr} U \pm 2 \sqrt{\operatorname{det} U}$ is nonzero and the matrix V is well-defined.

Proof of Squareroot Lemma

By the Cayley-Hamilton theorem, the unitary 2×2 matrix U satisfies its characteristic equation $U^{2}+(\operatorname{tr} U) U+(\operatorname{det} U) I=0$; thus,

$$
(\operatorname{tr} U) U=U^{2}+(\operatorname{det} U) I
$$

Using this relation, we obtain

$$
\begin{aligned}
V^{2} & =\frac{1}{\operatorname{tr} U \pm 2 \sqrt{\operatorname{det} U}}(U \pm \sqrt{\operatorname{det} U} I)^{2} \\
& =\frac{1}{\operatorname{tr} U \pm \sqrt{\operatorname{det} U}}\left(U^{2}+(\operatorname{det} U) I \pm 2 \sqrt{\operatorname{det} U} U\right) \\
& =\frac{1}{\operatorname{tr} U \pm 2 \sqrt{\operatorname{det} U}}(\operatorname{tr} U \pm 2 \sqrt{\operatorname{det} U}) U=U
\end{aligned}
$$

Proof of Squareroot Lemma

It remains to show that V is a unitary matrix. Recall that the unitary matrix U can be diagonalized by a base change with some unitary matrix P, say $\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)=P U P^{\dagger}$. Then P diagonalizes V as well, so $P V P^{\dagger}=\operatorname{diag}(a, b)$. Since

$$
\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)=P U P^{\dagger}=\left(P V P^{\dagger}\right)\left(P V P^{\dagger}\right)=\operatorname{diag}\left(a^{2}, b^{2}\right)
$$

it follows that $a=\sqrt{\lambda_{1}}$ and $b=\sqrt{\lambda_{2}}$ are complex numbers of absolute value 1. Therefore, $\operatorname{diag}(a, b)$ is a unitary matrix and we can conclude that $V=$ $P^{\dagger} \operatorname{diag}(a, b) P$ is a unitary matrix as well.

Conclusions

A quantum gate with 2 control bits can be realized with quantum gates that have just a single control bit.

More generally, a quantum gate with m control bits can be realized with quantum gates that have $\mathrm{m}-1$ control bits.

In summary, a quantum gates with multiple controls can be realized by quantum gates that have just single controls, and those can be realized by single quantum bit gates and controlled-not gates.

