Quantum Bits

Andreas Klappenecker

Quantum Bit

A bit has two clearly distinguishable states, 0 and 1 , and no other states.

A quantum bit has two clearly distinguishable states, $|0\rangle$ and $|1\rangle$. In addition it can be in any state $a|0\rangle+b \mid 1>$ with $|a|^{2}+|b|^{2}=1$.

The observed value of a quantum bit is always 0 or 1 , never anything else.

Quantum Bits

The states $|0\rangle$ and $|1\rangle$ should be understood as basis vectors of a complex vector space. By convention, we order the basis $(|0\rangle,|1\rangle)$ such that

$$
|0\rangle=\binom{1}{0}, \quad|1\rangle=\binom{0}{1} .
$$

The state $a|0\rangle+b|1\rangle$ is a linear combination of these vectors and is represented as

$$
a|0\rangle+b|1\rangle=\binom{a}{b} .
$$

Measurement

We call $\{|0\rangle,|1\rangle\}$ the computational basis of a quantum bit.
A measurement of a quantum bit in the state $a|0\rangle+b \mid 1>$ will give

- the value 0 with probability $|a|^{2}$ and
- the value 1 with probability $|b|^{2}$.

Perfect Coin Flip

On a classical computer, we usually do not have a good source of random bits available, and we simulate randomness by pseudorandom generators.

On a quantum computer, we can get a random generator by initializing and measuring a quantum bit in the state:

$$
\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle
$$

Exercise

Find all quantum states that yield

- 0 with probability $1 / 2$ and
- 1 with probability $1 / 2$.

