Shor's Algorithm

Andreas Klappenecker

Factoring Integers

Given an integer n that is not prime, the goal is to find a nontrivial factor of n.

Main Idea (behind most Factoring Algorithms)

Given a positive integer n.
If you can find integers a and b such that
(2) n divides $a^{2}-b^{2}=(a+b)(a-b)$

- $a \neq \pm b \bmod n$
then $\operatorname{gcd}(a \pm b, n)$ yields a nontrivial factor of n.

Example 1

Let $\mathrm{n}=1271$
Given $a=36$ and $b=5$, we have

- n divides $36^{2}-5^{2}=1271$
- $36 \not \equiv \pm 5 \bmod 1271$

Thus, we $\operatorname{get} \operatorname{gcd}(36-5,1271)=31$ and $\operatorname{gcd}(36+5,1271)=41$
In fact, $1271=31$ * 41 .
Problem: How can we find suitable integers a and b ?

Example 2

Let $n=15$.
For $a=14$ and $b=1$
Then n divides $\left(a^{2}-b^{2}\right)=196-1=195=15^{*} 13$
but $14=a \equiv-b=-1 \bmod n$.
Here we fail to get a nontrivial factor as

$$
\operatorname{gcd}(a-b, n)=1 \text { and } \operatorname{gcd}(a+b, n)=n .
$$

Main Idea behind Shor's Algorithm

Given a positive integer n.
If you can find an integer a such that

- n divides $a^{2}-1^{2}=(a+1)(a-1)$, equivalently, $a^{2}=1 \bmod n$
- $a \not \equiv \pm 1 \bmod n$
then $\operatorname{gcd}(a \pm 1, n)$ yields a nontrivial factor of n.
How can we find a suitable a?

Order

Let c be a integer such that $\operatorname{gcd}(c, n)=1$.
The smallest positive integer r such that

$$
c^{r}=1 \bmod n
$$

is called the order of c modulo n .

Example

Let $n=15$.
We determine the order of $2 \bmod n$.
$2,2^{2}, 2^{3}, 2^{4}=1 \bmod 16$
Thus, the order of $2 \bmod n$ is 4 .

Chinese Remainder Theorem

Chinese Remainder Theorem: Let p and q be coprime integers. Then $x \equiv a \bmod p$
$x \equiv b \bmod q$
has a unique solution x in the range $0<=x<p q$.
Corollary. There are four different solutions to $x^{2} \equiv 1 \bmod p q$, since $x \equiv \pm 1 \bmod p$
$x \equiv \pm 1 \bmod q$
has four different solutions. Ex: $n=3^{*} 5, x_{1}=1, x_{2}=14, x_{3}=4, x_{4}=11$

Reduction

Goal: Factor n.
Choose an integer c such that $\operatorname{gcd}(c, n)=1$. Compute the order r of c.
If r is even and $c^{r / 2} \neq-1 \bmod n$, setting $a=c^{r / 2}$ and $b=1$ yields
(2 n divides $a^{2}-b^{2}=c^{r}-1$

- $a \not \equiv \pm b \bmod n, a s c^{r / 2} \neq \pm 1 \bmod n$

Therefore, $\operatorname{gcd}\left(c^{r / 2} \pm 1, n\right)$ yields a factor of n.

Probability to Succeed

Lemma. If $n=\Pi_{i=1}{ }^{k} p_{i}{ }^{(i)}$ with p_{i} odd, then an element c chosen uniformly at random from $\{c \mid 0<=c<$ $n, \operatorname{gcd}(c, n)=1\}$ will have even order r and satisfy $c^{r / 2} \neq-1 \bmod n$ with probability $\geqq 1-1 / 2^{k-1}$.

Indeed, let $r(i)$ denote order of c mod $p_{i}^{(i)}$, and let $d(i)$ denote the largest power of 2 dividing $r(i)$.
If r is odd, then $d(i)=1$ for all i.
If r is even and $c^{r / 2}=-1 \bmod n$, then $c^{r / 2}=-1 \bmod p_{i}^{a(i)}$, and we can conclude that $r(i)$ divides r but does not divide $r / 2$. Thus, $d(i)>1$. Furthermore, all $d(i)$ must all be equal, since $r=\operatorname{Icm}(r(1), \ldots, r(k))$.

In summary, the algorithm fails if and only if $d(1)=\ldots=d(k)$.
The multiplicative group mod $p_{i}{ }^{(i)}$ is cyclic for odd p_{i}. Therefore, the probability that a random element c in this multiplicative group has order divisible by $d(i)$ is $s=1 / 2$. For c chosen uniformly at random all $d(i)$ with $1<i<=k$ are equal to $d(1)$ with probability $\leqslant=1 / 2^{k-1}$. q.e.d.

Summary

Given an integer n.
If n is even, then return 2
else if n is a power of a prime p, then return p.
Choose c from $\{c \mid 1<c<n, \operatorname{gcd}(c, n)=1\}$ uniformly at random.
Calculate order r of $c \bmod n$.
If r is even and $c^{r / 2} \neq-1 \bmod n$, then return $\operatorname{gcd}\left(c^{r / 2}-1, n\right)$
otherwise return "fail"

