Shor's Algorithm Part 2

Andreas Klappenecker

Given: integer n and an integer c coprime to n Let q be a power of 2 such that $n^2 <= q=2^l < 2n^2$. We use two registers, each with $l=log_2 q$ bits. The state space is $\mathbf{C}^q \otimes \mathbf{C}^q$

The initial state is $|0\rangle \otimes |0\rangle$. After applying Hadamard gates, we get $\frac{1}{\sqrt{q}}\sum_{a=0}^{q}|a\rangle\otimes|0\rangle.$ Applying the black box function yields $\frac{1}{\sqrt{q}} \sum_{a=0}^{q-1} |a\rangle \otimes |x^a \pmod{n}\rangle.$

The Boolean function depends on n and x. It can be constructed in poly time.

$$\frac{1}{\sqrt{q}} \sum_{a=0}^{q-1} |a\rangle \otimes |x^a \pmod{n}\rangle.$$

Applying the Fourier transform yields
$$\frac{1}{q} \sum_{a=0}^{q-1} \sum_{c=0}^{q-1} \exp(2\pi i a c/q) |c\rangle \otimes |x^a \pmod{n}\rangle.$$

 $\frac{1}{q} \sum_{a=0}^{q-1} \sum_{c=0}^{q-1} \exp(2\pi i a c/q) |c\rangle \otimes |x^a \pmod{n}\rangle.$

We now measure. Let's assume that x has order $r \mod n$. Then

$$\Pr[\text{observe } (c, x^k \mod n)] = \left| \frac{1}{q} \sum_{a:x^a \equiv x^k} \exp(2\pi i a x^a) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r} \exp(2\pi i a x^b) \right| = \left| \frac{1}{q} \sum_{b=0}^{l(q-k-1)/r$$

|c/q)|

$2\pi i(br+k)c/q)$

|2|

$$\Pr[\text{observe } (c, x^k \mod n)] = \left| \frac{1}{q} \sum_{b=0}^{\lfloor (q-k-1)/r \rfloor} \exp(2r) \right| = \frac{1}{q^2} \left| \sum_{b=0}^{\lfloor (q-k-1)/r \rfloor} \exp(2r) \right|$$

The powers of $exp(2\pi i cr/q)$ nearly cancel out unless cr/q is close to an integer. This is called destructive interference.

$2\pi i(br+k)c/q) \Big|^2 (2\pi i bcr/q) \Big|^2$

 $exp(2\pi i bcr/q)$ for various b when cr/q is not close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is not close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is not close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is not close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is not close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is not close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is not close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is not close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is not close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is not close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is not close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is not close to an integer

 $exp(2\pi i bcr/q)$ for various b when cr/q is close to an integer

Learning from Observations

In general, rc mod q lies in the large interval $\left[-\frac{q}{2}, \frac{q}{2}\right]$. If rc mod q in [-r/2, r/2] then Pr[observe (c, x^k mod n)] $\geq 1/3r^2$ rc mod q in $\left[-r/2, r/2\right]$ means that there exists an integer d s.t. -r/2 <= rc - dq <= r/2

Dividing by rq yields

|c/q - d/r| <= 1/2q (*)

Since $q > n^2$ there is at most one fraction d/r with r<n satisfying (*)

Continued Fractions

Since we know c and q, we obtain the fraction d/r in lowest terms by rounding c/q to the nearest fraction having a denominator smaller than n.

We can find this fraction by using the continued fraction expansion of c/q. This can be done by a variation of the Euclidean algorithm.

Loose Ends

We remains to show that

The Fourier transform can be computed in O($(\log q)^2$) time. The modular exponentiation can be computed in poly time The continued fraction can yield the result Assuming these results, we obtained a polynomial time algorithm to factor a given composite integer n.