Shor's Algorithm Part 2

Andreas Klappenecker

Given: integer n and an integer c coprime to n
Let q be a power of 2 such that $n^{2}<=q=2^{1}<2 n^{2}$.
We use two registers, each with $1=\log _{2} q$ bits.
The state space is $\mathrm{C}^{q} \otimes \mathrm{C}^{q}$

Quantum Algorithm

Analysis

The initial state is $|0\rangle \otimes|0\rangle$.
After applying Hadamard gates, we get

$$
\frac{1}{\sqrt{q}} \sum_{a=0}^{q-1}|a\rangle \otimes|0\rangle .
$$

Applying the black box function yields

$$
\frac{1}{\sqrt{q}} \sum_{a=0}^{q-1}|a\rangle \otimes\left|x^{a}(\bmod n)\right\rangle .
$$

The Boolean function depends on n and x. It can be constructed in poly time.

Analysis

$$
\frac{1}{\sqrt{q}} \sum_{a=0}^{q-1}|a\rangle \otimes\left|x^{a}(\bmod n)\right\rangle .
$$

Applying the Fourier transform yields

$$
\frac{1}{q} \sum_{a=0}^{q-1} \sum_{c=0}^{q-1} \exp (2 \pi i a c / q)|c\rangle \otimes\left|x^{a}(\bmod n)\right\rangle .
$$

Analysis

$\frac{1}{q} \sum_{a=0}^{q-1} \sum_{c=0}^{q-1} \exp (2 \pi i a c / q)|c\rangle \otimes\left|x^{a}(\bmod n)\right\rangle$.
We now measure.
Let's assume that x has order $r \bmod n$. Then

$$
\begin{aligned}
\operatorname{Pr}\left[\text { observe }\left(c, x^{k} \bmod n\right)\right] & =\left|\frac{1}{q} \sum_{a: x^{a} \equiv x^{k}} \exp (2 \pi i a c / q)\right|^{2} \\
0 \leq k<r & =\left|\frac{1}{q} \sum_{b=0}^{\lfloor(q-k-1) / r\rfloor} \exp (2 \pi i(b r+k) c / q)\right|^{2}
\end{aligned}
$$

Analysis

$$
\begin{aligned}
\operatorname{Pr}\left[\text { observe }\left(c, x^{k} \bmod n\right)\right] & =\left|\frac{1}{q} \sum_{b=0}^{\lfloor(q-k-1) / r\rfloor} \exp (2 \pi i(b r+k) c / q)\right|^{2} \\
& =\frac{1}{q^{2}}\left|\sum_{b=0}^{\lfloor(q-k-1) / r\rfloor} \exp (2 \pi i b c r / q)\right|^{2}
\end{aligned}
$$

The powers of $\exp (2 \pi i \mathrm{cr} / \mathrm{q})$ nearly cancel out unless cr / q is close to an integer. This is called destructive interference.

Destructive Interference

$\exp (2 \pi i b c r / q)$ for various b when cr / q is not close to an integer
$\exp (2 \pi i b c r / q)$ for various b when cr / q is close to an integer

Destructive Interference

$\exp (2 \pi i b c r / q)$ for various b when cr / q is not close to an integer
$\exp (2 \pi i \mathrm{bcr} / \mathrm{q})$ for various b when cr / q is close to an integer

Destructive Interference

$\exp (2 \pi i b c r / q)$ for various b when cr / q is not close to an integer
$\exp (2 \pi i \mathrm{bcr} / \mathrm{q})$ for various b when cr / q is close to an integer

Destructive Interference

$\exp (2 \pi i b c r / q)$ for various b when cr / q is not close to an integer
$\exp (2 \pi i \mathrm{bcr} / \mathrm{q})$ for various b when cr / q is close to an integer

Destructive Interference

$\exp (2 \pi i b c r / q)$ for various b when cr / q is not close to an integer
$\exp (2 \pi i \mathrm{bcr} / \mathrm{q})$ for various b when cr / q is close to an integer

Destructive Interference

$\exp (2 \pi i b c r / q)$ for various b when cr / q is not close to an integer
$\exp (2 \pi i \mathrm{bcr} / \mathrm{q})$ for various b when cr / q is close to an integer

Destructive Interference

$\exp (2 \pi i b c r / q)$ for various b when cr / q is not close to an integer
$\exp (2 \pi i \mathrm{bcr} / \mathrm{q})$ for various b when cr / q is close to an integer

Destructive Interference

$\exp (2 \pi i b c r / q)$ for various b when cr / q is not close to an integer
$\exp (2 \pi i \mathrm{bcr} / \mathrm{q})$ for various b when cr / q is close to an integer

Destructive Interference

$\exp (2 \pi i b c r / q)$ for various b when cr / q is not close to an integer
$\exp (2 \pi i \mathrm{bcr} / \mathrm{q})$ for various b when cr / q is close to an integer

Destructive Interference

$\exp (2 \pi i b c r / q)$ for various b when cr / q is not close to an integer
$\exp (2 \pi i b c r / q)$ for various b when cr / q is close to an integer

Destructive Interference

$\exp (2 \pi i b c r / q)$ for various b when cr / q is not close to an integer
$\exp (2 \pi i \mathrm{bcr} / \mathrm{q})$ for various b when cr / q is close to an integer

Destructive Interference

$\exp (2 \pi i b c r / q)$ for various b when cr / q is not close to an integer
$\exp (2 \pi i \mathrm{bcr} / \mathrm{q})$ for various b when cr / q is close to an integer

Learning from Observations

In general, r c mod q lies in the large interval $[-q / 2, q / 2]$.
If $r c \bmod q$ in $[-r / 2, r / 2]$ then $\operatorname{Pr}\left[\right.$ observe $\left.\left(c, x^{k} \bmod n\right)\right] \geq 1 / 3 r^{2}$
$r c \bmod q$ in $[-r / 2, r / 2]$ means that there exists an integer d s.t.

$$
-r / 2<=r c-d q<=r / 2
$$

Dividing by rq yields

$$
\begin{equation*}
|c / q-d / r|<=1 / 2 q \tag{}
\end{equation*}
$$

Since $q>n^{2}$ there is at most one fraction d / r with $r<n$ satisfying (*)

Continued Fractions

Since we know cand q, we obtain the fraction d / r in lowest terms by rounding c / q to the nearest fraction having a denominator smaller than n .

We can find this fraction by using the continued fraction expansion of c / q. This can be done by a variation of the Euclidean algorithm.

Loose Ends

We remains to show that

- the Fourier transform can be computed in $O\left((\log q)^{2}\right)$ time.
- the modular exponentiation can be computed in poly time
- the continued fraction can yield the result

Assuming these results, we obtained a polynomial time algorithm to factor a given composite integer n.

