Simon's Algorithm: The Quantum Part

Andreas Klappenecker

The Problem

Given: a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ such that there exists an s in $\{0,1\}^{n}$ so that for all x, y in $\{0,1\}^{n}$ the following property holds:

$$
f(x)=f(y) \text { if and only if } x=y \text { or } x \oplus S=y
$$

where \oplus is the bitwise xor operator (=addition $\bmod 2)$.
Goal: Find s

Example

Let $n=3$.
The function $f(x)$ is a $2-$ to- 1 function.

We have $\mathrm{s}=101$
Notice: You might have to evaluate as many as $2^{n-1}+1$ different arguments to find s.

x	$f(x)$
000	111
001	000
010	110
011	101
100	000
101	111
110	101
111	110

Quantum Algorithm

The quantum part is particularly simple:

All $2 n$ qubits are initialized to $|0\rangle$. MSBs are input, and LSBs are output

Apply Hadamard gate, then B_{f}, followed by Hadamard gates and measurement.

$$
B_{f}=\left\{\begin{array}{ll}
\mathbf{C}^{2^{n}} \otimes \mathbf{C}^{2^{n}} & \rightarrow \mathbf{C}^{2^{n}} \otimes \mathbf{C}^{2^{n}} \\
|x\rangle \otimes|y\rangle & \mapsto
\end{array}|x\rangle \otimes|y \oplus f(x)\rangle\right.
$$

Quantum Algorithm

Initial state: $\left|0^{n}\right\rangle \otimes\left|0^{n}\right\rangle$
After Hadamard gates are applied to n most significant bits, we get

$$
\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle \otimes\left|0^{n}\right\rangle
$$

Quantum Algorithm

$$
\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle \otimes\left|0^{n}\right\rangle
$$

Applying B_{f} yields

$$
\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle \otimes|f(x)\rangle
$$

Quantum Algorithm

$$
\begin{array}{ll:l:l}
\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x\rangle \otimes|f(x)\rangle \\
\text { Applying Hadamard gates yields } \\
\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}} \sum_{y \in\{0,1\}^{n}}(-1)^{x \cdot y}|y\rangle \otimes|f(x)\rangle \\
\hline & & & \\
\hline
\end{array}
$$

Measurement

The state before measurement is given by

$$
\frac{1}{2^{n}} \sum_{x} \sum_{y}(-1)^{x \cdot y}|y\rangle \otimes|f(x)\rangle=\sum_{y \in\{0,1\}^{n}}|y\rangle \otimes\left(\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}(-1)^{x \cdot y}|f(x)\rangle\right)
$$

If $s=0$, then $f(x)$ is injective, hence bijective.
Then the probability to observe y is given by

$$
\| \frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}(-1)^{x \cdot y}|f(x)\rangle\left\|^{2}=\right\| \frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}(-1)^{x \cdot y}|x\rangle \|^{2}=\frac{1}{2^{n}}
$$

If $s \neq 0$, then for each z in $\operatorname{ran}(f)$, there exist two distinct arguments x_{z} and x_{z}^{\prime} such that $f\left(x_{z}\right)=z=f\left(x_{z}^{\prime}\right)$, and $x_{z} \oplus s=x_{z}^{\prime}$. The probability to observe y is given by

$$
\begin{aligned}
& \| \frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}(-1)^{x \cdot y}|f(x)\rangle\left\|^{2}=\right\| \frac{1}{2^{n}} \sum_{z \in \operatorname{ran}(f)}\left((-1)^{x_{z} \cdot y}+(-1)^{x_{z}^{\prime} \cdot y}\right)|z\rangle \|^{2} \\
& =\| \frac{1}{2^{n}} \sum_{z \in \operatorname{ran}(f)}\left((-1)^{x_{z} \cdot y}+(-1)^{\left(x_{z} \oplus s\right) \cdot y}\right)|z\rangle \|^{2} \\
& =\| \frac{1}{2^{n}} \sum_{z \in \operatorname{ran}(f)}(-1)^{x_{z} \cdot y}\left(1+(-1)^{s \cdot y}\right)|z\rangle \|^{2}= \begin{cases}2^{-(n-1)} & \text { if } s \cdot y=0 \\
0 & \text { if } s \cdot y=1\end{cases}
\end{aligned}
$$

Conclusions

For all s in $\{0,1\} n$, the observed strings y are uniformly distributed among $\{y \mid s \cdot y=0\}$.

Strategy: Repeat the quantum algorithm n-1 times to obtain elements $Y=\left\{y_{1}, \ldots, y_{n-1}\right\}$.

If the vectors in Y are linearly independent, then there exists precisely one nonzero s^{\prime} in $\{0,1\}^{n}$ such that $s^{\prime} \cdot y_{k}=0$ for all k.

If $f\left(s^{\prime}\right)=f(0)$, then $s=s^{\prime}$; otherwise $s=0$.

