Simon's Algorithm: The Quantum Part

Andreas Klappenecker

The Problem

Given: a Boolean function f: $\{0,1\}^n \rightarrow \{0,1\}^n$ such that there exists an s in $\{0,1\}^n$ so that for all x, y in $\{0,1\}^n$ the following property holds:

f(x)=f(y) if and only if x=y or x⊕s=y

where \oplus is the bitwise xor operator (=addition mod 2).

Goal: Find s

Example

Let n=3.

The function f(x) is a 2-to-1 function.

We have s=101

Notice: You might have to evaluate as many as $2^{n-1}+1$ different arguments to find s.

X	
000	
001	
010	
011	
100	
101	
110	
111	

f(x)
111
000
110
101
000
111
101
110

H

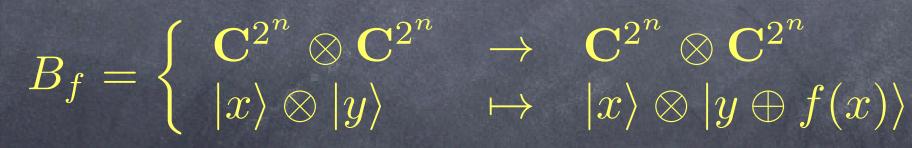
Η

Bf

The quantum part is particularly simple:

All 2n qubits are initialized to 10>. MSBs are input, and LSBs are output

Apply Hadamard gate, then B_f , followed by Hadamard gates and measurement.

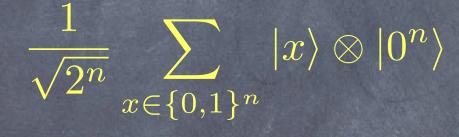


Η

H

Bf

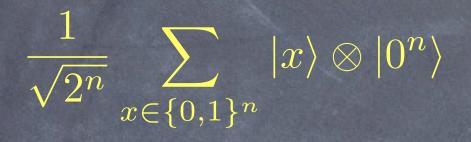
Initial state: $|0^n\rangle \otimes |0^n\rangle$ After Hadamard gates are applied to *n* most significant bits, we get



Η

H

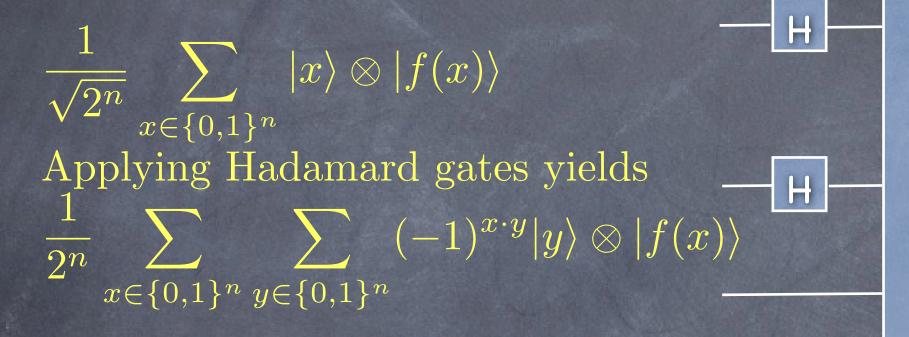
 $\mathbf{B}_{\mathbf{f}}$

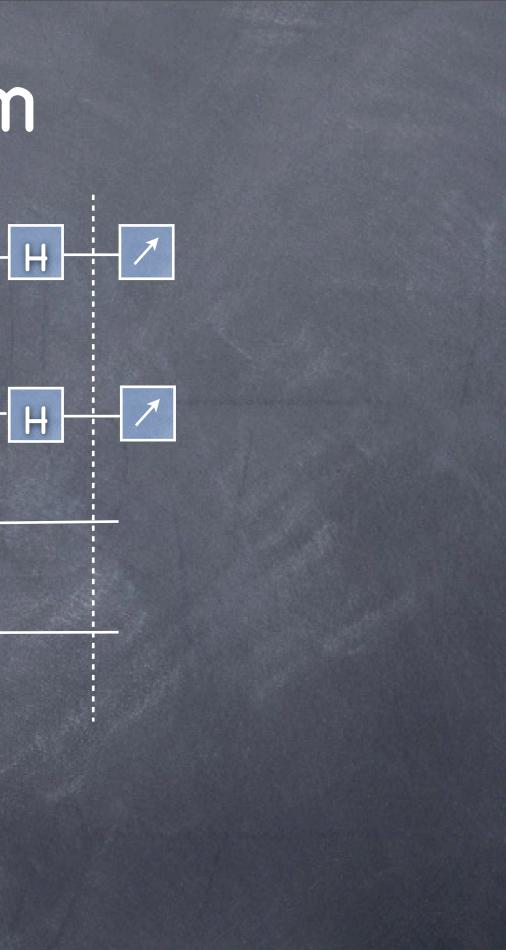


Applying B_f yields

$$\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle \otimes |f(x)\rangle$$

Bf



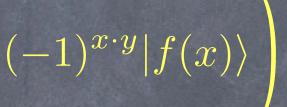


Measurement

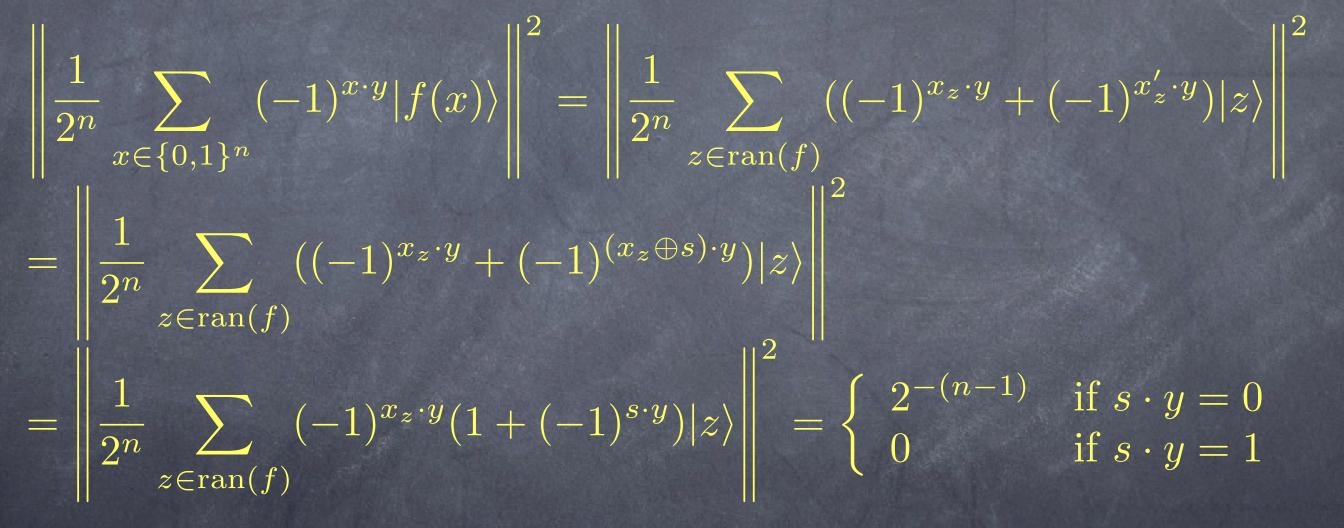
The state before measurement is given by

 $\frac{1}{2^n} \sum_{x} \sum_{y} (-1)^{x \cdot y} |y\rangle \otimes |f(x)\rangle = \sum_{y \in \{0,1\}^n} |y\rangle \otimes \left(\frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot y} |f(x)\rangle\right)$ If s = 0, then f(x) is injective, hence bijective. Then the probability to observe y is given by

$$\left\|\frac{1}{2^n}\sum_{x\in\{0,1\}^n} (-1)^{x\cdot y} |f(x)\rangle\right\|^2 = \left\|\frac{1}{2^n}\sum_{x\in\{0,1\}^n} (-1)^{x\cdot y} |x\rangle\right\|^2$$



If $s \neq 0$, then for each z in ran(f), there exist two distinct arguments x_z and x'_z such that $f(x_z) = z = f(x'_z)$, and $x_z \oplus s = x'_z$. The probability to observe y is given by



Conclusions

For all s in {0,1}ⁿ, the observed strings y are uniformly distributed among $\{ y \mid s \cdot y = 0 \}$.

Strategy: Repeat the quantum algorithm n-1 times to obtain elements Y = { $y_1, ..., y_{n-1}$ }.

If the vectors in Y are linearly independent, then there exists precisely one nonzero s' in $\{0,1\}^n$ such that s' \cdot y_k = 0 for all k.

If f(s')=f(0), then s=s'; otherwise s=0.